cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047524 Numbers that are congruent to {2, 7} mod 8.

Original entry on oeis.org

2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47, 50, 55, 58, 63, 66, 71, 74, 79, 82, 87, 90, 95, 98, 103, 106, 111, 114, 119, 122, 127, 130, 135, 138, 143, 146, 151, 154, 159, 162, 167, 170, 175, 178, 183, 186, 191, 194, 199, 202, 207, 210, 215, 218, 223, 226, 231, 234
Offset: 1

Views

Author

Keywords

Comments

A195605 is a subsequence. - Bruno Berselli, Sep 21 2011

Crossrefs

Programs

  • GAP
    Filtered([0..250],n->n mod 8=2 or n mod 8=7); # Muniru A Asiru, Aug 06 2018
    
  • Maple
    seq(coeff(series(x*(2+5*x+x^2)/((1+x)*(1-x)^2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Aug 06 2018
  • Mathematica
    Select[Range[300],MemberQ[{2,7},Mod[#,8]]&] (* or *)
    LinearRecurrence[ {1,1,-1},{2,7,10},60] (* Harvey P. Dale, Nov 05 2017 *)
    CoefficientList[ Series[(x^2 + 5x + 2)/((x - 1)^2 (x + 1)), {x, 0, 60}], x] (* Robert G. Wilson v, Aug 07 2018 *)
  • Maxima
    makelist(4*n - mod(n,2) - 1, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */
    
  • PARI
    is(n) = #setintersect([n%8], [2, 7]) > 0 \\ Felix Fröhlich, Aug 06 2018
    
  • Python
    def A047524(n): return (n<<2)-1-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Mar 22 2011: (Start)
a(n) = 4*n - 3/2 + (-1)^n/2.
G.f.: x*(2+5*x+x^2) / ( (1+x)*(x-1)^2 ). (End)
From Franck Maminirina Ramaharo, Aug 06 2018: (Start)
a(n) = 4*n - (n mod 2) - 1.
a(n) = A047615(n) + 2.
a(2*n) = A004771(n-1).
a(2*n-1) = A017089(n-1).
E.g.f.: ((8*x - 3)*exp(x) + exp(-x) + 2)/2. (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Muniru A Asiru, Aug 06 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 - log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010