A047524 Numbers that are congruent to {2, 7} mod 8.
2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47, 50, 55, 58, 63, 66, 71, 74, 79, 82, 87, 90, 95, 98, 103, 106, 111, 114, 119, 122, 127, 130, 135, 138, 143, 146, 151, 154, 159, 162, 167, 170, 175, 178, 183, 186, 191, 194, 199, 202, 207, 210, 215, 218, 223, 226, 231, 234
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
GAP
Filtered([0..250],n->n mod 8=2 or n mod 8=7); # Muniru A Asiru, Aug 06 2018
-
Maple
seq(coeff(series(x*(2+5*x+x^2)/((1+x)*(1-x)^2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Aug 06 2018
-
Mathematica
Select[Range[300],MemberQ[{2,7},Mod[#,8]]&] (* or *) LinearRecurrence[ {1,1,-1},{2,7,10},60] (* Harvey P. Dale, Nov 05 2017 *) CoefficientList[ Series[(x^2 + 5x + 2)/((x - 1)^2 (x + 1)), {x, 0, 60}], x] (* Robert G. Wilson v, Aug 07 2018 *)
-
Maxima
makelist(4*n - mod(n,2) - 1, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */
-
PARI
is(n) = #setintersect([n%8], [2, 7]) > 0 \\ Felix Fröhlich, Aug 06 2018
-
Python
def A047524(n): return (n<<2)-1-(n&1) # Chai Wah Wu, Mar 30 2024
Formula
a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Mar 22 2011: (Start)
a(n) = 4*n - 3/2 + (-1)^n/2.
G.f.: x*(2+5*x+x^2) / ( (1+x)*(x-1)^2 ). (End)
From Franck Maminirina Ramaharo, Aug 06 2018: (Start)
a(n) = 4*n - (n mod 2) - 1.
a(n) = A047615(n) + 2.
a(2*n) = A004771(n-1).
a(2*n-1) = A017089(n-1).
E.g.f.: ((8*x - 3)*exp(x) + exp(-x) + 2)/2. (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Muniru A Asiru, Aug 06 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 - log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021
Extensions
More terms from Vincenzo Librandi, Aug 06 2010
Comments