A047538 Numbers that are congruent to {0, 1, 4, 7} mod 8.
0, 1, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111, 112, 113, 116, 119, 120, 121, 124
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[2*n-2-(1+(-1)^n)*(-1)^((2*n-3) div 4-(-1)^n div 4) / 2 : n in [1..80]]; // Wesley Ivan Hurt, Sep 22 2015
-
Magma
[n: n in [0..150] | n mod 8 in {0,1,4,7}]; // Vincenzo Librandi, Sep 23 2015
-
Maple
A047538:=n->2*n-2-sin(Pi*(n-1)/2): seq(A047538(n), n=1..80); # Wesley Ivan Hurt, Sep 22 2015
-
Mathematica
Table[2n-2-Sin[Pi*(n-1)/2], {n, 80}] (* Wesley Ivan Hurt, Sep 22 2015 *) Select[Range[0, 150], MemberQ[{0, 1, 4, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, Sep 23 2015 *) LinearRecurrence[{2,-2,2,-1},{0,1,4,7},100] (* Harvey P. Dale, Aug 12 2016 *)
-
PARI
a(n) = (-4+(-I)^n+I^n+4*n)/2 \\ Colin Barker, Oct 18 2015
-
PARI
concat(0, Vec(x^2*(1+x)^2/((1+x^2)*(1-2*x+x^2)) + O(x^100))) \\ Colin Barker, Oct 18 2015
-
Sage
[lucas_number1(n,0,1)+2*n-4 for n in (2..57)] # Zerinvary Lajos, Jul 06 2008
Formula
From Paul Barry, Oct 27 2004: (Start)
G.f.: x^2*(1+x)^2 / ((1+x^2)*(1-2*x+x^2)).
E.g.f.: 2*x*exp(x)-sin(x).
a(n) = 2*n-2-sin(Pi*(n-1)/2).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4. (End)
a(n) = 2*n-2-(1+(-1)^n)*(-1)^((2*n-3)/4-(-1)^n/4)/2. - Wesley Ivan Hurt, Sep 22 2015
a(n) = (-4+(-i)^n+i^n+4*n)/2, where i = sqrt(-1). - Colin Barker, Oct 18 2015
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
Extensions
More terms from Wesley Ivan Hurt, Sep 22 2015
G.f. adapted to offset by Colin Barker, Oct 18 2015
Comments