cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084101 Expansion of (1+x)^2/((1-x)*(1+x^2)).

Original entry on oeis.org

1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums of A084099. Inverse binomial transform of A000749 (without leading zeros).
From Klaus Brockhaus, May 31 2010: (Start)
Periodic sequence: Repeat 1, 3, 3, 1.
Interleaving of A010684 and A176040.
Continued fraction expansion of (7 + 5*sqrt(29))/26.
Decimal expansion of 121/909.
a(n) = A143432(n+3) + 1 = 2*A021913(n+1) + 1 = 2*A133872(n+3) + 1.
a(n) = A165207(n+1) - 1.
First differences of A047538.
Binomial transform of A084102. (End)
From Wolfdieter Lang, Feb 09 2012: (Start)
a(n) = A045572(n+1) (Modd 5) := A203571(A045572(n+1)), n >= 0.
For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the five residue classes Modd 5, called [m] for m=0,1,...,4, are shown in the array A090298 if there the last row is taken as class [0] after inclusion of 0.
(End)

Examples

			From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 5 of nonnegative odd numbers restricted mod 5:
A045572: 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, ...
Modd 5:  1, 3, 3, 1,  1,  3,  3,  1,  1,  3, ...
(End)
		

Crossrefs

Cf. A084102.
Cf. A010684 (repeat 1, 3), A176040 (repeat 3, 1), A178593 (decimal expansion of (7+5*sqrt(29))/26), A143432 (expansion of (1+x^4)/((1-x)*(1+x^2))), A021913 (repeat 0, 0, 1, 1), A133872 (repeat 1, 1, 0, 0), A165207 (repeat 2, 2, 4, 4), A047538 (congruent to 0, 1, 4 or 7 mod 8), A084099 (expansion of (1+x)^2/(1+x^2)), A000749 (expansion of x^3/((1-x)^4-x^4)). - Klaus Brockhaus, May 31 2010

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x)^2/((1-x)*(1+x^2)) )); // G. C. Greubel, Feb 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^2/((1-x)(1+x^2)),{x,0,110}],x] (* or *) PadRight[{},110,{1,3,3,1}] (* Harvey P. Dale, Nov 21 2012 *)
  • PARI
    x='x+O('x^100); Vec((1+x)^2/((1-x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    ((1+x)^2/((1-x)*(1+x^2))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 28 2019

Formula

a(n) = binomial(3, n mod 4). - Paul Barry, May 25 2003
From Klaus Brockhaus, May 31 2010: (Start)
a(n) = a(n-4) for n > 3; a(0) = a(3) = 1, a(1) = a(2) = 3.
a(n) = (4 - (1+i)*i^n - (1-i)*(-i)^n)/2 where i = sqrt(-1). (End)
E.g.f.: 2*exp(x) + sin(x) - cos(x). - Arkadiusz Wesolowski, Nov 04 2017
a(n) = 2 - (-1)^(n*(n+1)/2). - Guenther Schrack, Feb 26 2019

A099855 a(n) = n*2^n - 2^(n/2)*sin(Pi*n/4).

Original entry on oeis.org

0, 1, 6, 22, 64, 164, 392, 904, 2048, 4592, 10208, 22496, 49152, 106560, 229504, 491648, 1048576, 2227968, 4718080, 9960960, 20971520, 44041216, 92276736, 192940032, 402653184, 838856704, 1744822272, 3623870464, 7516192768
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

Related to binomial transform of A002265. Sequence is identical to its fourth differences (cf. A139756, A137221). See also A097064, A135035, A038504, A135356. - Paul Curtz, Jun 18 2008

Crossrefs

Binomial transform of A047538.

Programs

  • Magma
    I:=[0,1,6,22]; [n le 4 select I[n] else 6*Self(n-1) -14*Self(n-2) +16*Self(n-3) -8*Self(n-4): n in [1..51]]; // G. C. Greubel, Apr 20 2023
    
  • Mathematica
    LinearRecurrence[{6,-14,16,-8},{0,1,6,22},30] (* Harvey P. Dale, Mar 22 2018 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099855
        if (n<5): return (0,1,6,22,64)[n]
        else: return 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 20 2023

Formula

G.f.: x/((1-2*x+2*x^2)*(1-4*x+4*x^2)).
a(n) = Sum_{k=0..n} 2^(k/2)*sin(Pi*k/4)*2^(n-k)*(n-k+1).
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4).
a(n) = 2*A001787(n) - A009545(n).

A074231 Numbers n such that Kronecker(8,n) = mu(gcd(8,n)).

Original entry on oeis.org

1, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111, 112, 113, 116, 119, 120, 121, 124, 127, 128, 129
Offset: 1

Views

Author

Jon Perry, Sep 17 2002

Keywords

Comments

A Chebyshev transform of (1+2x)/(1-2x) (A046055) given by G(x)->(1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 27 2004

Crossrefs

Essentially the same as A047538.

Programs

  • PARI
    for (x=1,200, for (y=1,200,if (kronecker(x,y)==moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y)))))
    
  • Sage
    [lucas_number1(n+2, 0, 1)+2*n for n in range(1, 66)] # Zerinvary Lajos, Mar 09 2009

Formula

From Paul Barry, Oct 27 2004: (Start)
G.f.: (1+x)^2/((1+x^2)*(1-2x+x^2));
e.g.f.: exp(x)(2+2x) - cos(x);
a(n) = 2n + 2 - cos(Pi*n/2);
a(n) = Sum_{k=0..n} (0^k + 4^k)*cos(Pi*(n-k)/2);
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k(2*2^(n-2k)-0^(n-2k));
a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) - a(n-4). (End)

A199627 G.f.: (1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)) for g=1.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2011

Keywords

Comments

Expansion of a Poincaré series [or Poincare series] for space of moduli M_2 of stable bundles.

Crossrefs

Cf. A047538.

Programs

  • Magma
    g:=1; m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4))));  // Bruno Berselli, Nov 08 2011
    
  • Maple
    f:=g->(1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4));
    s:=g->seriestolist(series(f(g),x,60));
    s(1);
  • PARI
    Vec((1 + x)^2*(1 - 2*x + 2*x^2 - x^3 - x^4 + 3*x^5 - 2*x^6 + x^7) / ((1 - x)^2*(1 + x^2)) + O(x^70)) \\ Colin Barker, Nov 05 2019

Formula

a(n) = A047538(n-3) for n >= 6. - Georg Fischer, Oct 28 2018
From Colin Barker, Nov 05 2019: (Start)
G.f.: (1 + x)^2*(1 - 2*x + 2*x^2 - x^3 - x^4 + 3*x^5 - 2*x^6 + x^7) / ((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>9.
a(n) = (-16 + (-i)^(1+n) + i^(1+n) + 4*n) / 2 for n>5, where i=sqrt(-1).
(End)

A242668 Expansion of 1/(1 - 8*x + 16*x^2 + x^4 - 4*x^5).

Original entry on oeis.org

1, 8, 48, 256, 1279, 6132, 28576, 130432, 585985, 2599952, 11419808, 49743104, 215163647, 925163500, 3957669648, 16854677312, 71498512897, 302248757272, 1273756836176, 5353050574336, 22440215412223, 93856659402724, 391745066819136, 1631995960879872
Offset: 0

Views

Author

Bruno Berselli, May 20 2014

Keywords

Comments

Subsequence of A047538.
a(n) is divisible by 4^(n mod 4).

References

  • C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), 229-230 (example 9.43).

Crossrefs

Cf. A047538.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-8*x+16*x^2+x^4-4*x^5)));
    
  • Mathematica
    CoefficientList[Series[1/((1 - 4 x) (1 - 4 x + x^4)), {x, 0, 30}], x]
    LinearRecurrence[{8,-16,0,-1,4},{1,8,48,256,1279},40] (* Harvey P. Dale, Aug 10 2021 *)
  • Maxima
    makelist(coeff(taylor(1/(1-8*x+16*x^2+x^4-4*x^5), x, 0, n), x, n), n, 0, 30);
    
  • PARI
    Vec(1/(1-8*x+16*x^2+x^4-4*x^5)+O(x^30))
    
  • Sage
    m = 30; L. = PowerSeriesRing(ZZ, m); f = 1/(1-8*x+16*x^2+x^4-4*x^5); print(f.coefficients())

Formula

G.f.: 1/((1 - 4*x)*(1 - 4*x + x^4)).
a(n) = 8*a(n-1) - 16*a(n-2) - a(n-4) + 4*a(n-5) for n>4.
a(n) = 4*a(n-1) - a(n-4) + 4^n for n>3 (see References, p. 229).
Trisections:
a(3k): 1, 256, 28576, 2599952, 215163647, 16854677312, 1273756836176, ... has g.f. (1+128*x-48*x^2+4*x^3)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4));
a(3k+1): 8, 1279, 130432, 11419808, 925163500, 71498512897, ... has g.f. (8+255*x-128*x^2+16*x^3)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4));
a(3k+2): 48, 6132, 585985, 49743104, 3957669648, 302248757272, ... has g.f. (48-12*x+x^2)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4)).
a(n) ~ 4^(4+n). - Stefano Spezia, Mar 29 2023
Showing 1-5 of 5 results.