A047656 a(n) = 3^((n^2-n)/2).
1, 1, 3, 27, 729, 59049, 14348907, 10460353203, 22876792454961, 150094635296999121, 2954312706550833698643, 174449211009120179071170507, 30903154382632612361920641803529, 16423203268260658146231467800709255289, 26183890704263137277674192438430182020124347
Offset: 0
Examples
The a(2)=3 binary 2 X 2 matrices are [0 0; 0 0], [0 1; 0 0], and [0 0; 1 0]. - _Dennis P. Walsh_, Apr 03 2014
References
- P. A. MacMahon, Chess tournaments and the like treated by the calculus of symmetric functions, Coll. Papers I, MIT Press, 344-375.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..65
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- T. R. Hoffman and J. P. Solazzo, Complex Two-Graphs via Equiangular Tight Frames, arXiv preprint arXiv:1408.0334 [math.CO], 2014.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Eric Weisstein's World of Mathematics, (-1,0,1)-Matrix
- Eric Weisstein's World of Mathematics, Symmetric Matrix
- Index entries for sequences related to tournaments
Crossrefs
Cf. A007747.
Programs
-
Maple
seq(3^binomial(n, 2), n=0..12); # Zerinvary Lajos, Jun 16 2007 seq(3^((n^2-n)/2), n=0..14);
-
Mathematica
Table[3^((n^2 - n)/2), {n, 0, 14}] (* Eric W. Weisstein, Jan 03 2021 *) 3^Table[Binomial[n, 2], {n, 0, 14}] (* Eric W. Weisstein, Jan 03 2021 *) 3^Binomial[Range[0, 14], 2] (* Eric W. Weisstein, Jan 03 2021 *) Table[Count[Tuples[{-1, 0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 3}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
PARI
a(n)=3^binomial(n+1,2) \\ Charles R Greathouse IV, Apr 17 2012
Formula
a(n+1) is the determinant of an n X n matrix M_(i, j) = C(3*i,j). - Benoit Cloitre, Aug 27 2003
Sequence is given by the Hankel transform (see A001906 for definition) of A007564 = {1, 1, 4, 19, 100, 562, 3304, ...}; example: det([1, 1, 4, 19; 1, 4, 19, 100; 4, 19, 100, 562; 19, 100, 562, 3304]) = 3^6 = 729. - Philippe Deléham, Aug 20 2005
The sequence a(n+1) = [1,3,27,729,59049,14348907,...] is the Hankel transform (see A001906 for definition) of A047891 = 1, 3, 12, 57, 300, 1586, 9912, ... . - Philippe Deléham, Aug 29 2006
a(n) = 3^binomial(n,2). - Zerinvary Lajos, Jun 16 2007
G.f. A(x) satisfies: A(x) = 1 + x * A(3*x). - Ilya Gutkovskiy, Jun 04 2020
a(n) = a(n-1)*3^(n-1), a(0) = 1. - Mehdi Naima, Mar 09 2022
Comments