cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A053290 Number of nonsingular n X n matrices over GF(3).

Original entry on oeis.org

1, 2, 48, 11232, 24261120, 475566474240, 84129611558952960, 134068444202678083338240, 1923442429811445711790394572800, 248381049201184165590947520186915225600, 288678833735376059528974260112416365258106470400
Offset: 0

Views

Author

Stephen G Penrice, Mar 04 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(3^n - 3^k): k in [0..n-1]]: n in [1..9]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[3^n - 3^k, {k, 0, n - 1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013; edited by Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 3^n - 3^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = Product_{k=0..n-1}(3^n-3^k). - corrected by Michel Marcus, Sep 18 2015
a(n) = A047656(n)*A027871(n). - Bruno Berselli, Jan 30 2013
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} A219205(k).
a(n) ~ c * 3^(n^2), where c = A100220. (End)

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A027871 a(n) = Product_{i=1..n} (3^i - 1).

Original entry on oeis.org

1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0

Views

Author

Keywords

Comments

2*(10)^m|a(n) where 4*m <= n <= 4*m+3 for m >= 1. - G. C. Greubel, Nov 20 2015
Given probability p = 1/3^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A047656(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100220 ~ 0.4398739. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)

A001174 Number of oriented graphs (i.e., digraphs with no bidirected edges) on n unlabeled nodes. Also number of complete digraphs on n unlabeled nodes. Number of antisymmetric relations (i.e., oriented graphs with loops) on n unlabeled nodes is A083670.

Original entry on oeis.org

1, 2, 7, 42, 582, 21480, 2142288, 575016219, 415939243032, 816007449011040, 4374406209970747314, 64539836938720749739356, 2637796735571225009053373136, 300365896158980530053498490893399
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 133, c_p.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A047656 (labeled case), A054941 (connected labeled case), A086345 (connected unlabeled case).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v - 1, 2];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 15] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 23 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A001174(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q-1>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 15 2024

Formula

There's an explicit formula - see for example Harary and Palmer (book), Eq. (5.4.14).
a(n) ~ 3^(n*(n-1)/2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic
Revised description from Vladeta Jovovic, Jan 20 2005

A015001 q-factorial numbers for q=3.

Original entry on oeis.org

1, 1, 4, 52, 2080, 251680, 91611520, 100131391360, 328430963660800, 3232089113385932800, 95424198983606279987200, 8452007576574959037306265600, 2245867453247498115393020895232000, 1790317944898228845164815929864036352000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of maximal chains in the lattice of subspaces of an n-dimensional vector space over GF(3). - Geoffrey Critzer, Sep 07 2022

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (3^n-1)*Self(n-1)/2: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==((3^n - 1) * a[n-1])/2}, a, {n,15}] (* Vincenzo Librandi, Oct 27 2012 *)
    Table[QFactorial[n, 3], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)

Formula

a(n) = Product_{k=1..n} (q^k - 1) / (q - 1).
a(0) = 1, a(n) = (3^n - 1)*a(n-1)/2. - Vincenzo Librandi, Oct 27 2012
a(n) = (Product_{i=0..n-1} (q^n-q^i))/((q-1)^n*q^binomial(n,2)) = A053290(n)/(A000079(n)*A047656(n)). - Geoffrey Critzer, Sep 07 2022
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A003462(k).
a(n) ~ c * 3^(n*(n+1)/2)/2^n, where c = A100220. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 08 2021

A195248 T(n,k) = Number of lower triangles of an n X n 0..k array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by two or less.

Original entry on oeis.org

2, 3, 8, 4, 27, 64, 5, 46, 729, 1024, 6, 65, 1682, 59049, 32768, 7, 84, 2729, 190514, 14348907, 2097152, 8, 103, 3776, 357847, 67379894, 10460353203, 268435456, 9, 122, 4823, 533142, 147824001, 74236765958, 22876792454961, 68719476736, 10, 141
Offset: 1

Views

Author

R. H. Hardin, Sep 13 2011

Keywords

Comments

Table starts
.......2...........3...........4............5............6............7
.......8..........27..........46...........65...........84..........103
......64.........729........1682.........2729.........3776.........4823
....1024.......59049......190514.......357847.......533142.......709613
...32768....14348907....67379894....147824001....237368212....329060365
.2097152.10460353203.74236765958.192172956591.333437946202.481573562101

Examples

			Some solutions for n=6, k=5
..4............1............5............0............0............1
..5.3..........1.3..........5.4..........1.2..........0.2..........0.0
..5.4.5........1.2.4........3.4.4........1.3.1........1.0.0........2.1.2
..4.3.4.4......3.3.3.3......5.3.5.4......2.1.1.2......0.1.1.0......0.0.2.2
..5.4.2.2.4....4.5.4.5.5....4.3.5.4.3....2.3.1.3.1....2.0.2.2.0....2.0.1.2.4
..4.3.2.2.4.4..3.5.3.3.5.5..3.5.5.3.3.1..4.2.2.1.1.0..0.2.0.2.0.1..1.1.0.2.4.4
		

Crossrefs

Column 1 is A006125(n+1).
Column 2 is A047656(n+1).
Cf. A195214.

Formula

Empirical for rows:
T(1,k) = 1*k + 1,
T(2,k) = 19*k - 11
T(3,k) = 1047*k - 1459 for k>2,
T(4,k) = 176471*k - 349213 for k>4,
T(5,k) = 92031109*k - 223153377 for k>6,
T(6,k) = 149824887097*k - 417651128341 for k>8,
T(7,k) = 764465228592699*k - 2364216638005277 for k>10,
Generalizing, T(n,k) = A195214(n)*k + const(n) for k>2*n-4.

A054941 Number of weakly connected oriented graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019

Crossrefs

Row sums of A350732.
The unlabeled version is A086345.
Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).

Programs

  • Magma
    m:=30;
    f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}];
    Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 22 2012 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
    
  • SageMath
    m=30
    def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
    def A054941_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(f(x)) ).egf_to_ogf().list()
    a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023

Formula

E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003

Extensions

More terms from Vladeta Jovovic, Feb 14 2003

A109345 a(n) = 5^((n^2 - n)/2).

Original entry on oeis.org

1, 1, 5, 125, 15625, 9765625, 30517578125, 476837158203125, 37252902984619140625, 14551915228366851806640625, 28421709430404007434844970703125
Offset: 0

Views

Author

Philippe Deléham, Aug 21 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A078009 = {1, 1, 6, 41, 306, 2426, 20076, 171481, ...}; example: det([1, 1, 6, 41; 1, 6, 41, 306; 6, 41, 306, 2426; 41, 306, 2426, 20076]) = 5^6 = 15625.
a(n) is the number of simple labeled graphs, with bi-directional and non-directed edges allowed and not regarded as equivalent, on n labeled nodes. - Mark Stander, Feb 07 2019

Crossrefs

Cf. A006125 (number of graphs on n labeled nodes), A047656 (number of semi-complete digraphs on n labeled nodes), A053763 (number of simple digraphs on n labeled nodes), A053764.

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(5i, j).
G.f. A(x) satisfies: A(x) = 1 + x * A(5*x). - Ilya Gutkovskiy, Jun 04 2020

A117262 Triangle T, read by rows, where matrix inverse T^-1 has -3^n in the secondary diagonal: [T^-1](n+1,n) = -3^n, with all 1's in the main diagonal and zeros elsewhere.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 27, 27, 9, 1, 729, 729, 243, 27, 1, 59049, 59049, 19683, 2187, 81, 1, 14348907, 14348907, 4782969, 531441, 19683, 243, 1, 10460353203, 10460353203, 3486784401, 387420489, 14348907, 177147, 729, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Comments

More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-1, q=3, r=1.

Examples

			Triangle T begins:
1;
1,1;
3,3,1;
27,27,9,1;
729,729,243,27,1;
59049,59049,19683,2187,81,1;
14348907,14348907,4782969,531441,19683,243,1;
10460353203,10460353203,3486784401,387420489,14348907,177147,729,1;
Matrix inverse T^-1 has -3^n in the 2nd diagonal:
1,
-1,1,
0,-3,1,
0,0,-9,1,
0,0,0,-27,1,
0,0,0,0,-81,1,
0,0,0,0,0,-243,1, ...
		

Crossrefs

Cf. A047656 (column 0), A117263 (row sums); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117256 (p=q=5), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117265 (p=-2, q=2).

Programs

  • PARI
    {T(n,k)=local(m=1,p=-1,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}

Formula

T(n,k) = 3^(n*(n-1)/2 - k*(k-1)/2).

A025237 Expansion of (1 -x -sqrt(1-2*x-11*x^2))/(6*x^2).

Original entry on oeis.org

1, 1, 4, 10, 37, 121, 451, 1639, 6259, 23923, 93502, 367852, 1465003, 5874103, 23740276, 96503554, 394542379, 1620716251, 6687296308, 27700303510, 115152607831, 480244735171, 2008802728819, 8425318166635, 35425680021397, 149296062114181, 630526903497706, 2668194946794124, 11311786743536125
Offset: 0

Views

Author

Keywords

Comments

a(n) = (1/3)*s(n+2), where s = A014432.
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)}. - Manuel Kauers, Nov 18 2008
Also, number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 1), (0, 0, -1), (1, 1, 0)}. - Manuel Kauers, Nov 18 2008
Reversion of x/(1+x+3x^2). Hankel transform is 3^C(n+1,2) [A047656(n+1)]. - Paul Barry, Sep 07 2009

Examples

			G.f.: 1 + x + 4*x^2 + 10*x^3 + 37*x^4 + 121*x^5 + 451*x^6 + 1639*x^7 + ...
		

Crossrefs

Cf. A217275.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x - Sqrt[1 - 2*x - 11*x^2])/(6*x^2), {x, 0, 50}], x] (* G. C. Greubel, Feb 07 2017 *)
  • PARI
    {a(n) = polcoeff((1 - x - sqrt(1 - 2*x - 11*x^2 + x^3*O(x^n))) / (6*x^2), n)}; /* Michael Somos, Sep 23 2003 */

Formula

From Paul Barry, Sep 07 2009: (Start)
G.f.: 1/(1-x-3x^2/(1-x-3x^2/(1-x-3x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k)*3^k*A000108(k). (End)
D-finite with recurrence: (n+2)*a(n) - (2*n+1)*a(n-1) + 11*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ (1+2*sqrt(3))^(n+3/2)/(2*sqrt(Pi)*3^(3/4)*n^(3/2)). - Vaclav Kotesovec, Sep 29 2012
G.f. A(x) satisfies: A(x) = 1 + x * (1 + 3*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020

Extensions

Edited by N. J. A. Sloane, Nov 28 2008
Showing 1-10 of 31 results. Next