cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084603 Coefficients of 1/sqrt(1 - 2*x - 11*x^2); also, a(n) is the central coefficient of (1 + x + 3*x^2)^n.

Original entry on oeis.org

1, 1, 7, 19, 91, 331, 1441, 5797, 24739, 103411, 441397, 1876777, 8047909, 34533253, 148803487, 642228139, 2778852979, 12043194163, 52286516821, 227323871929, 989675651041, 4313712072241, 18822940658947, 82215245701519
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

5th binomial transform of 2^n*LegendreP(n,-2) (signed version of A069835). - Paul Barry, Sep 03 2004
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U (or D) steps come in three colors. - N-E. Fahssi, Feb 05 2008
Diagonal of the rational function 1 / (1 - 3*x^2 - y^2 - x*y). - Ilya Gutkovskiy, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*Binomial[n,k]*3^k,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    for(n=0,30,t=polcoeff((1+x+3*x^2)^n,n,x); print1(t","))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)3^k. - Paul Barry, Aug 26 2004
Binomial transform is A084609. Hankel transform is 6^n*3^C(n,2). - Paul Barry, Sep 16 2006
a(n) = (1/Pi)*Integral_{x=1-2*sqrt(3)..1+2*sqrt(3)} x^n/sqrt(-x^2 + 2*x + 11). - Paul Barry, Sep 16 2006
From Paul Barry, Sep 16 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k,k)*3^k;
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k,k)*3^k. (End)
From N-E. Fahssi, Feb 05 2008: (Start)
a(n) is also the central coefficient of (3+x+x^2)^n;
a(n) = Sum_{k=0..n} 2^(n-k)*C(n,k)*T(k,n), where T(k,n) is the triangle of trinomial coefficients = coefficient of x^n of (1+x+x^2)^k: A027907. (End)
D-finite with recurrence: a(n+2) = ( (2*n+3)*a(n+1) + 11*(n+1)*a(n) )/(n+2); a(0)=a(1)=1. - Sergei N. Gladkovskii, Aug 01 2012
a(n) ~ sqrt(18+3*sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
E.g.f.: exp(x)*BesselI(0, 2*sqrt(3)*x). - Paul D. Hanna, Nov 09 2014, after Vladeta Jovovic in A084601
From Peter Bala, Jan 07 2022: (Start)
O.g.f. A(x) = 1 + x*d/dx(log(B(x))), where B(x) = (1 - x - sqrt(1 - 2*x - 11*x^2))/(6*x^2) is the o.g.f. of A025237.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

A217275 Expansion of 2/(1-x+sqrt(1-2*x-27*x^2)).

Original entry on oeis.org

1, 1, 8, 22, 141, 561, 3291, 15583, 88691, 459187, 2599570, 14136200, 80391235, 450046143, 2579291352, 14710321998, 85002979083, 491050703739, 2859262171872, 16674374605722, 97747766045679, 574231140306699, 3385974360904227, 20009363692187115, 118582649963026677
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2012

Keywords

Crossrefs

Cf. A001006 (z=1), A025235 (z=2), A025237 (z=3), A091147 (z=4), A091148 (z=5), A091149 (z=6).

Programs

  • Mathematica
    Table[SeriesCoefficient[2/(1-x+Sqrt[1-2*x-27*x^2]),{x,0,n}],{n,0,25}]
    Table[Sum[Binomial[n,2k]*Binomial[2k,k]*7^k/(k+1),{k,0,n}],{n,0,25}]

Formula

Generally for G.f. = 2/(1-x+sqrt(1-2x-(4*z-1)*x^2)) is asymptotic
a(n) ~ (1+2*sqrt(z))^(n+3/2)/(2*sqrt(Pi)*z^(3/4)*n^(3/2)); here we have the case z=7.
D-finite with recurrence: (n+2)*a(n)=(2*n+1)*a(n-1)+(4*z-1)*(n-1)*a(n-2);; here with z=7.
G.f.: 1/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - x - 7*x^2/(1 - ....))))), a continued fraction. - Ilya Gutkovskiy, May 26 2017

A014432 a(n) = Sum_{i=1..n-1} a(i)*a(n-1-i), with a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 3, 12, 30, 111, 363, 1353, 4917, 18777, 71769, 280506, 1103556, 4395009, 17622309, 71220828, 289510662, 1183627137, 4862148753, 20061888924, 83100910530, 345457823493, 1440734205513, 6026408186457, 25275954499905, 106277040064191
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025237.

Programs

  • Maple
    seq(coeff(convert(series((1+x-sqrt(1-2*x-11*x^2))/(2*x),x,50),polynom),x,i),i=0..30);
    A014431:=proc(n) options remember: local i: if n<2 then RETURN([1,3][n+1]) else RETURN(add(A014431(i)*A014431(n-1-i),i=1..n-1)) fi:end;seq(A014431(n),n=0..30); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
  • Mathematica
    Rest[CoefficientList[Series[(1+x-Sqrt[1-2x-11x^2])/2,{x,0,30}],x]] (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    a(n)=polcoeff((1+x-sqrt(1-2*x-11*x^2+x*O(x^n)))/2,n)

Formula

G.f.: ((1+x-sqrt(1-2*x-11*x^2)))/(2*x). - Michael Somos, Jun 08 2000; corrected by Robert Israel, Sep 10 2020
a(n) = (3/(11*n)) * ((3+n)*A025237(n+1) - (2*n+3)*A025237(n)) for n>0. [Mark van Hoeij, Jul 02 2010]
(n+1)*a(n) = (2*n-1)*a(n-1)+11*(n-2)*a(n-2). - Robert Israel, Sep 10 2020
G.f.: 1 + 3*x/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - ...))))) (continued fraction). - Nikolaos Pantelidis, Nov 24 2022

Extensions

Corrected by C. Ronaldo (aga_new_ac(AT)hotmail.com) and Ralf Stephan, Dec 19 2004

A306684 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2019

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   2,   3,    4,    5,    6,     7,     8, ...
   1,   4,   7,   10,   13,   16,    19,    22, ...
   1,   9,  21,   37,   57,   81,   109,   141, ...
   1,  21,  61,  121,  201,  301,   421,   561, ...
   1,  51, 191,  451,  861, 1451,  2251,  3291, ...
   1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
		

Crossrefs

Main diagonal gives A307906.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 + x + k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = (2*n+1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A374488 Expansion of 1/(1 - 2*x - 11*x^2)^(3/2).

Original entry on oeis.org

1, 3, 24, 100, 555, 2541, 12628, 59004, 281655, 1315765, 6171132, 28692456, 133315273, 616780815, 2848833120, 13124483344, 60364983987, 277142478921, 1270586298520, 5817063737100, 26600252408961, 121501917998263, 554429553154044, 2527595449990500
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/(1 - (11*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    a(n) = binomial(n+2, 2)*sum(k=0, n\2, 3^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));

Formula

a(0) = 1, a(1) = 3; a(n) = ((2*n+1)*a(n-1) + 11*(n+1)*a(n-2))/n.
a(n) = binomial(n+2,2) * A025237(n).
From Seiichi Manyama, Aug 20 2025: (Start)
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 3^k * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (1/2)^k * (11/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k). (End)
a(n) ~ sqrt(n) * (1 + 2*sqrt(3))^(n + 3/2) / (4 * 3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025
Showing 1-5 of 5 results.