cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A090042 a(n) = 2*a(n-1) + 11*a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841
Offset: 0

Views

Author

Paul Barry, Nov 20 2003

Keywords

Comments

Binomial transform of A001021 (powers of 12), with interpolated zeros.
For n > 0, a(n) = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 4,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 12 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • GAP
    a := [1, 1];; for n in [3..30] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Maple
    a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 2*procname(n-1) + 11*procname(n-2) fi; end:
    seq(a(n), n=0..25); # Muniru A Asiru, Feb 18 2018
  • Mathematica
    a[n_]:= Simplify[((1+Sqrt[12])^n +(1-Sqrt[12])^n)/2]; Array[a, 30, 0] (* or *)
    CoefficientList[Series[(x-1)/(11x^2+2x-1), {x,0,30}], x] (* or *)
    Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *)
    LinearRecurrence[{2, 11}, {1, 1}, 30] (* Ray Chandler, Aug 01 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018
    
  • Sage
    ((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019

Formula

E.g.f.: exp(x)*cosh(2*sqrt(3)*x).
a(n) = ((1 + 2*sqrt(3))^n + (1 - 2*sqrt(3))^n)/2.
a(n) = Sum_{k=0..n} A098158(n,k)*12^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=12, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Feb 17 2018: (Start)
G.f.: (1-x)/(1 - 2*x - 11*x^2). (See the Mathematica program.)
a(n) = b(n+1) - b(n), with b(n) = A015520(n). This leads to the Binet-de Moivre type formula given in the Mathematica program.
a(n) = (i*sqrt(11))^n*(S(n,-2*i/sqrt(11)) + (i/sqrt(11))*S(n-1,-2*i/sqrt(11))), n >= 0, with Chebyshev S polynomials (coefficients in A049310), with S(-2, x) = -1, S(-1, x) = 0 and i = sqrt(-1). Via Cayley-Hamilton. See the Gary W. Adamson comment above or the Mathematica program of Robert G. Wilson v with another matrix. (End)
From Peter Bala, Jan 07 2022: (Start)
a(n) = [x^n] (x + sqrt(1 + 12*x^2))^n.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
O.g.f.: 1 + x*d/dx(log(B(x))), where B(x) = 1/sqrt(1 - 2*x - 11*x^2) is the o.g.f. of A084603. (End)

A098264 G.f.: 1/(1-2x-19x^2)^(1/2).

Original entry on oeis.org

1, 1, 11, 31, 211, 851, 4901, 22961, 124531, 623011, 3313201, 17086301, 90453661, 473616781, 2509264811, 13250049551, 70368250451, 373539254611, 1989045489281, 10597110956861, 56566637447401, 302196871378601, 1616570627763311, 8654955238504531, 46384344189261661
Offset: 0

Views

Author

Paul Barry, Aug 31 2004

Keywords

Comments

Central coefficient of (1+x+5x^2)^n.
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps can have five colors. - N-E. Fahssi, Mar 31 2008

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-2*x-19*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/(1-2*x-19*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f. : exp(x)*BesselI(0, 2*sqrt(5)x).
a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k)*5^k}.
a(n) = sum{k=0..floor(n/2), binomial(n, 2k)*binomial(2k, k)*5^k}.
n*a(n) +(1-2*n)*a(n-1) +19*(1-n)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ sqrt(50+5*sqrt(5))*(1+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012

A307855 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,     1,     1, ...
   1,   1,    1,    1,     1,     1,     1, ...
   1,   3,    5,    7,     9,    11,    13, ...
   1,   7,   13,   19,    25,    31,    37, ...
   1,  19,   49,   91,   145,   211,   289, ...
   1,  51,  161,  331,   561,   851,  1201, ...
   1, 141,  581, 1441,  2841,  4901,  7741, ...
   1, 393, 2045, 5797, 12489, 22961, 38053, ...
		

Crossrefs

Columns k=0..6 give A000012, A002426, A084601, A084603, A084605, A098264, A098265.
Main diagonal gives A187018.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * binomial(2*j,j).
D-finite with recurrence: n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A110180 Triangle of generalized central trinomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Rows sums are A110181. Diagonal sums are A110182. Columns include central trinomial coefficients A002426, A084601, A084603, A084605, A098264. T(n,k) = central coefficient (1 + x + kx^2)^n.

Examples

			Rows begin
  1;
  1,  1;
  1,  1,  1;
  1,  3,  1,  1;
  1,  7,  5,  1,  1;
  1, 19, 13,  7,  1,  1;
		

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)

Formula

Number triangle T(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(n-k-j, j)*k^j.

A084602 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 7, 6, 9, 1, 3, 12, 19, 36, 27, 27, 1, 4, 18, 40, 91, 120, 162, 108, 81, 1, 5, 25, 70, 185, 331, 555, 630, 675, 405, 243, 1, 6, 33, 110, 330, 726, 1441, 2178, 2970, 2970, 2673, 1458, 729, 1, 7, 42, 161, 539, 1386, 3157, 5797, 9471, 12474, 14553
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Rows:
{1},
{1,1, 3},
{1,2, 7,  6,  9},
{1,3,12, 19, 36, 27,  27},
{1,4,18, 40, 91,120, 162, 108,  81},
{1,5,25, 70,185,331, 555, 630, 675, 405, 243},
{1,6,33,110,330,726,1441,2178,2970,2970,2673,1458,729},
		

Crossrefs

Programs

  • Mathematica
    With[{eq = (1 + x + 3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n, 0, 10}]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    for(n=0,15, for(k=0,2*n,t=polcoeff((1+x+3*x^2)^n,k,x); print1(t",")); print(" "))

A084604 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 4x^2)^n.

Original entry on oeis.org

1, 1, 1, 4, 1, 2, 9, 8, 16, 1, 3, 15, 25, 60, 48, 64, 1, 4, 22, 52, 145, 208, 352, 256, 256, 1, 5, 30, 90, 285, 561, 1140, 1440, 1920, 1280, 1024, 1, 6, 39, 140, 495, 1206, 2841, 4824, 7920, 8960, 9984, 6144, 4096, 1, 7, 49, 203, 791, 2261, 6027, 12489, 24108, 36176
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Examples

			Rows:
{1},
{1,1, 4},
{1,2, 9,  8, 16},
{1,3,15, 25, 60,  48,  64},
{1,4,22, 52,145, 208, 352, 256, 256},
{1,5,30, 90,285, 561,1140,1440,1920,1280,1024},
{1,6,39,140,495,1206,2841,4824,7920,8960,9984,6144,4096},
		

Crossrefs

Programs

  • Mathematica
    With[{eq=(1+x+4x^2)},Flatten[Table[CoefficientList[Expand[eq^n],x],{n,0,10}]]] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    for(n=0,10, for(k=0,2*n,t=polcoeff((1+x+4*x^2)^n,k,x); print1(t",")); print(" "))

A098265 G.f. : 1/(1-2x-23x^2)^(1/2).

Original entry on oeis.org

1, 1, 13, 37, 289, 1201, 7741, 38053, 227137, 1207009, 6995053, 38591653, 221446369, 1245188881, 7130897437, 40516456357, 232260610177, 1327920945601, 7627285093069, 43787832627493, 252042452907169, 1451244932278129, 8370001674641917, 48303478743113893, 279083099450496961
Offset: 0

Views

Author

Paul Barry, Aug 31 2004

Keywords

Comments

Central coefficient of (1+x+6x^2)^n.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-2*x-23*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/(1-2*x-23*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(x)*BesselI(0, 2*sqrt(6)x).
a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k)*6^k}.
a(n) = sum{k=0..floor(n/2), binomial(n, 2k)*binomial(2k, k)*6^k}.
n*a(n) +(1-2n)*a(n-1) +23(1-n)*a(n-2)=0. (Recurrence (4) in the Noe paper).- Veka Gesell, Jun 26 2012
a(n) ~ sqrt(72+6*sqrt(6))*(1+2*sqrt(6))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012

A098329 Expansion of 1/(1-2x-31x^2)^(1/2).

Original entry on oeis.org

1, 1, 17, 49, 481, 2081, 16241, 85457, 600769, 3489601, 23391697, 143000177, 938797729, 5897385313, 38397492017, 244866166289, 1590355308929, 10231490804353, 66456634775441, 429898281869489, 2795449543782241, 18150017431150241, 118194927388259057, 769438418283309649
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Central coefficient of (1+x+8x^2)^n. 7th binomial transform of 2^n*LegendreP(n,-3) (signed version of A084773).
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps can have 8 colors. - N-E. Fahssi, Mar 31 2008

Crossrefs

Cf. A084603.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-2*x-31*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    CoefficientList[Series[1/Sqrt[1-2x-31x^2],{x,0,30}],x] (* Harvey P. Dale, May 14 2017 *)
    a[n_] := Hypergeometric2F1[1/2 - n/2, -n/2, 1, 32];
    Table[a[n], {n, 0, 23}] (* Peter Luschny, Mar 18 2018 *)
  • PARI
    x='x+O('x^66); Vec(1/(1-2*x-31*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013

Formula

a(n) = sum{k=0..floor(n/2), binomial(n-k, k)*binomial(n, k)*8^k}.
E.g.f.: exp(x)*BesselI(0, 4*sqrt(2)*x)
Recurrence: n*a(n) = (2*n-1)*a(n-1) + 31*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(8+sqrt(2))*(1+4*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = hypergeom([1/2 - n/2, -n/2], [1], 32). - Peter Luschny, Mar 18 2018

A374488 Expansion of 1/(1 - 2*x - 11*x^2)^(3/2).

Original entry on oeis.org

1, 3, 24, 100, 555, 2541, 12628, 59004, 281655, 1315765, 6171132, 28692456, 133315273, 616780815, 2848833120, 13124483344, 60364983987, 277142478921, 1270586298520, 5817063737100, 26600252408961, 121501917998263, 554429553154044, 2527595449990500
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/(1 - (11*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    a(n) = binomial(n+2, 2)*sum(k=0, n\2, 3^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));

Formula

a(0) = 1, a(1) = 3; a(n) = ((2*n+1)*a(n-1) + 11*(n+1)*a(n-2))/n.
a(n) = binomial(n+2,2) * A025237(n).
From Seiichi Manyama, Aug 20 2025: (Start)
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 3^k * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (1/2)^k * (11/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k). (End)
a(n) ~ sqrt(n) * (1 + 2*sqrt(3))^(n + 3/2) / (4 * 3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025
Showing 1-9 of 9 results.