A090042
a(n) = 2*a(n-1) + 11*a(n-2) for n > 1, a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841
Offset: 0
-
a := [1, 1];; for n in [3..30] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
-
a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 2*procname(n-1) + 11*procname(n-2) fi; end:
seq(a(n), n=0..25); # Muniru A Asiru, Feb 18 2018
-
a[n_]:= Simplify[((1+Sqrt[12])^n +(1-Sqrt[12])^n)/2]; Array[a, 30, 0] (* or *)
CoefficientList[Series[(x-1)/(11x^2+2x-1), {x,0,30}], x] (* or *)
Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *)
LinearRecurrence[{2, 11}, {1, 1}, 30] (* Ray Chandler, Aug 01 2015 *)
-
x='x+O('x^30); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018
-
((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
A098264
G.f.: 1/(1-2x-19x^2)^(1/2).
Original entry on oeis.org
1, 1, 11, 31, 211, 851, 4901, 22961, 124531, 623011, 3313201, 17086301, 90453661, 473616781, 2509264811, 13250049551, 70368250451, 373539254611, 1989045489281, 10597110956861, 56566637447401, 302196871378601, 1616570627763311, 8654955238504531, 46384344189261661
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-19*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
x='x+O('x^66); Vec(1/(1-2*x-19*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A307855
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 7, 13, 19, 25, 31, 37, ...
1, 19, 49, 91, 145, 211, 289, ...
1, 51, 161, 331, 561, 851, 1201, ...
1, 141, 581, 1441, 2841, 4901, 7741, ...
1, 393, 2045, 5797, 12489, 22961, 38053, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A110180
Triangle of generalized central trinomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
Offset: 0
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 7, 5, 1, 1;
1, 19, 13, 7, 1, 1;
-
T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)
A084602
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.
Original entry on oeis.org
1, 1, 1, 3, 1, 2, 7, 6, 9, 1, 3, 12, 19, 36, 27, 27, 1, 4, 18, 40, 91, 120, 162, 108, 81, 1, 5, 25, 70, 185, 331, 555, 630, 675, 405, 243, 1, 6, 33, 110, 330, 726, 1441, 2178, 2970, 2970, 2673, 1458, 729, 1, 7, 42, 161, 539, 1386, 3157, 5797, 9471, 12474, 14553
Offset: 0
Rows:
{1},
{1,1, 3},
{1,2, 7, 6, 9},
{1,3,12, 19, 36, 27, 27},
{1,4,18, 40, 91,120, 162, 108, 81},
{1,5,25, 70,185,331, 555, 630, 675, 405, 243},
{1,6,33,110,330,726,1441,2178,2970,2970,2673,1458,729},
-
With[{eq = (1 + x + 3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n, 0, 10}]]] (* G. C. Greubel, Mar 02 2017 *)
-
for(n=0,15, for(k=0,2*n,t=polcoeff((1+x+3*x^2)^n,k,x); print1(t",")); print(" "))
A084604
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 4x^2)^n.
Original entry on oeis.org
1, 1, 1, 4, 1, 2, 9, 8, 16, 1, 3, 15, 25, 60, 48, 64, 1, 4, 22, 52, 145, 208, 352, 256, 256, 1, 5, 30, 90, 285, 561, 1140, 1440, 1920, 1280, 1024, 1, 6, 39, 140, 495, 1206, 2841, 4824, 7920, 8960, 9984, 6144, 4096, 1, 7, 49, 203, 791, 2261, 6027, 12489, 24108, 36176
Offset: 0
Rows:
{1},
{1,1, 4},
{1,2, 9, 8, 16},
{1,3,15, 25, 60, 48, 64},
{1,4,22, 52,145, 208, 352, 256, 256},
{1,5,30, 90,285, 561,1140,1440,1920,1280,1024},
{1,6,39,140,495,1206,2841,4824,7920,8960,9984,6144,4096},
-
With[{eq=(1+x+4x^2)},Flatten[Table[CoefficientList[Expand[eq^n],x],{n,0,10}]]] (* Harvey P. Dale, May 19 2011 *)
-
for(n=0,10, for(k=0,2*n,t=polcoeff((1+x+4*x^2)^n,k,x); print1(t",")); print(" "))
A098265
G.f. : 1/(1-2x-23x^2)^(1/2).
Original entry on oeis.org
1, 1, 13, 37, 289, 1201, 7741, 38053, 227137, 1207009, 6995053, 38591653, 221446369, 1245188881, 7130897437, 40516456357, 232260610177, 1327920945601, 7627285093069, 43787832627493, 252042452907169, 1451244932278129, 8370001674641917, 48303478743113893, 279083099450496961
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-23*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
x='x+O('x^66); Vec(1/(1-2*x-23*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A098329
Expansion of 1/(1-2x-31x^2)^(1/2).
Original entry on oeis.org
1, 1, 17, 49, 481, 2081, 16241, 85457, 600769, 3489601, 23391697, 143000177, 938797729, 5897385313, 38397492017, 244866166289, 1590355308929, 10231490804353, 66456634775441, 429898281869489, 2795449543782241, 18150017431150241, 118194927388259057, 769438418283309649
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-31*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
CoefficientList[Series[1/Sqrt[1-2x-31x^2],{x,0,30}],x] (* Harvey P. Dale, May 14 2017 *)
a[n_] := Hypergeometric2F1[1/2 - n/2, -n/2, 1, 32];
Table[a[n], {n, 0, 23}] (* Peter Luschny, Mar 18 2018 *)
-
x='x+O('x^66); Vec(1/(1-2*x-31*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A374488
Expansion of 1/(1 - 2*x - 11*x^2)^(3/2).
Original entry on oeis.org
1, 3, 24, 100, 555, 2541, 12628, 59004, 281655, 1315765, 6171132, 28692456, 133315273, 616780815, 2848833120, 13124483344, 60364983987, 277142478921, 1270586298520, 5817063737100, 26600252408961, 121501917998263, 554429553154044, 2527595449990500
Offset: 0
-
Module[{x}, CoefficientList[Series[1/(1 - (11*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 3^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
Showing 1-9 of 9 results.
Comments