cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084601 Coefficients of 1/(1-2*x-7*x^2)^(1/2); also, a(n) is the central coefficient of (1+x+2*x^2)^n.

Original entry on oeis.org

1, 1, 5, 13, 49, 161, 581, 2045, 7393, 26689, 97285, 355565, 1305745, 4808545, 17760965, 65753693, 243954113, 906758785, 3375949829, 12587460557, 46995614449, 175669746209, 657370655045, 2462383495357, 9232029156001, 34641994234561, 130090261856261
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A036442 : 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U (or D) can have 2 colors. - N-E. Fahssi, Feb 05 2008
Diagonal of the rational function 1 / (1 - 2*x^2 - y^2 - x*y). - Ilya Gutkovskiy, Apr 22 2025

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2 - n/2, -n/2], [1], 8):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Mar 18 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[1-2x-7x^2],{x,0,30}],x] (* Harvey P. Dale, Sep 18 2011 *)
  • Maxima
    a(n):=coeff(expand((1+x+2*x^2)^n),x,n);
    makelist(a(n),n,0,26); /* Emanuele Munarini, Mar 02 2011 */
  • PARI
    for(n=0,30,t=polcoeff((1+x+2*x^2)^n,n,x); print1(t","))
    

Formula

E.g.f.: exp(x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*2^k. - Paul Barry, Aug 26 2004
a(n) = Sum_{k=0..n} Trinomial(k, n)*Binomial(n, k), with Trinomial=A027907 and Binomial=A007318. - Ralf Stephan, Jan 28 2005
a(n) is also the central coefficient of (2+x+x^2)^n; a(n) = Sum_{k=0..n} C(n,k) T(k,n), where T(k,n) is the triangle of trinomial coefficients = coefficient of x^n of (1+x+x^2)^k : A027907 - N-E. Fahssi, Feb 05 2008
a(n+2) = ((2*n+3)*a(n+1) + 7*(n+1)*a(n))/(n+2); a(0)=a(1)=1. - Sergei N. Gladkovskii, Aug 01 2012
G.f.: G(0), where G(k)= 1 + x*(2+7*x)*(4*k+1)/( 4*k+2 - x*(2+7*x)*(4*k+2)*(4*k+3)/(x*(2+7*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013
a(n) ~ sqrt(8+2*sqrt(2)) * (1+2*sqrt(2))^n / (4*sqrt(Pi*n)). - Vaclav Kotesovec, May 09 2014
a(n) = hypergeom([1/2 - n/2, -n/2], [1], 8). - Peter Luschny, Mar 18 2018

A084603 Coefficients of 1/sqrt(1 - 2*x - 11*x^2); also, a(n) is the central coefficient of (1 + x + 3*x^2)^n.

Original entry on oeis.org

1, 1, 7, 19, 91, 331, 1441, 5797, 24739, 103411, 441397, 1876777, 8047909, 34533253, 148803487, 642228139, 2778852979, 12043194163, 52286516821, 227323871929, 989675651041, 4313712072241, 18822940658947, 82215245701519
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

5th binomial transform of 2^n*LegendreP(n,-2) (signed version of A069835). - Paul Barry, Sep 03 2004
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U (or D) steps come in three colors. - N-E. Fahssi, Feb 05 2008
Diagonal of the rational function 1 / (1 - 3*x^2 - y^2 - x*y). - Ilya Gutkovskiy, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*Binomial[n,k]*3^k,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    for(n=0,30,t=polcoeff((1+x+3*x^2)^n,n,x); print1(t","))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)3^k. - Paul Barry, Aug 26 2004
Binomial transform is A084609. Hankel transform is 6^n*3^C(n,2). - Paul Barry, Sep 16 2006
a(n) = (1/Pi)*Integral_{x=1-2*sqrt(3)..1+2*sqrt(3)} x^n/sqrt(-x^2 + 2*x + 11). - Paul Barry, Sep 16 2006
From Paul Barry, Sep 16 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k,k)*3^k;
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k,k)*3^k. (End)
From N-E. Fahssi, Feb 05 2008: (Start)
a(n) is also the central coefficient of (3+x+x^2)^n;
a(n) = Sum_{k=0..n} 2^(n-k)*C(n,k)*T(k,n), where T(k,n) is the triangle of trinomial coefficients = coefficient of x^n of (1+x+x^2)^k: A027907. (End)
D-finite with recurrence: a(n+2) = ( (2*n+3)*a(n+1) + 11*(n+1)*a(n) )/(n+2); a(0)=a(1)=1. - Sergei N. Gladkovskii, Aug 01 2012
a(n) ~ sqrt(18+3*sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
E.g.f.: exp(x)*BesselI(0, 2*sqrt(3)*x). - Paul D. Hanna, Nov 09 2014, after Vladeta Jovovic in A084601
From Peter Bala, Jan 07 2022: (Start)
O.g.f. A(x) = 1 + x*d/dx(log(B(x))), where B(x) = (1 - x - sqrt(1 - 2*x - 11*x^2))/(6*x^2) is the o.g.f. of A025237.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
Showing 1-2 of 2 results.