A036442
a(n) = 2^((n-1)*(n+2)/2).
Original entry on oeis.org
1, 4, 32, 512, 16384, 1048576, 134217728, 34359738368, 17592186044416, 18014398509481984, 36893488147419103232, 151115727451828646838272, 1237940039285380274899124224, 20282409603651670423947251286016, 664613997892457936451903530140172288
Offset: 1
Abdallah Rayhan (rayhan(AT)engr.uvic.ca)
- Vincenzo Librandi, Table of n, a(n) for n = 1..80
- P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161, 2013 and J. Int. Seq. 17 (2014) # 14.5.1
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
- C. Lo and C. Chiu, A Fault-Tolerant Architecture for ATM Networks, 20th IEEE Conf. Local Computer Networks, 1995, pp. 29-36
- Index to divisibility sequences
-
I:=[1]; [n le 1 select I[n] else Self(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Oct 24 2012
-
Table[2^((n-1) * (n+2)/2), {n, 1, 30}] (* Vincenzo Librandi, Oct 24 2012 *)
-
A036442[n]:=2^((n-1)*(n+2)/2)$
makelist(A036442[n],n,1,30); /* Martin Ettl, Oct 29 2012 */
-
a(n)=2^((n-1)*(n+2)/2) \\ Charles R Greathouse IV, Oct 24 2012
A084600
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+x+2x^2)^n for n >= 0.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 4, 4, 1, 3, 9, 13, 18, 12, 8, 1, 4, 14, 28, 49, 56, 56, 32, 16, 1, 5, 20, 50, 105, 161, 210, 200, 160, 80, 32, 1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64, 1, 7, 35, 119, 329, 721, 1337, 2045, 2674, 2884, 2632, 1904, 1120, 448, 128, 1, 8, 44
Offset: 0
Triangle begins:
1;
1, 1, 2;
1, 2, 5, 4, 4;
1, 3, 9, 13, 18, 12, 8;
1, 4, 14, 28, 49, 56, 56, 32, 16;
1, 5, 20, 50, 105, 161, 210, 200, 160, 80, 32;
1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64;
-
a084600 n = a084600_list !! n
a084600_list = concat $ iterate ([1,1,2] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
f:= proc(n) option remember; expand((1+x+2*x^2)^n) end:
T:= (n,k)-> coeff(f(n), x, k):
seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 03 2011
-
t[n_, k_] := Coefficient[(1+x+2x^2)^n, x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, 2 n}] // Flatten (* Jean-François Alcover, Feb 27 2015 *)
A084603
Coefficients of 1/sqrt(1 - 2*x - 11*x^2); also, a(n) is the central coefficient of (1 + x + 3*x^2)^n.
Original entry on oeis.org
1, 1, 7, 19, 91, 331, 1441, 5797, 24739, 103411, 441397, 1876777, 8047909, 34533253, 148803487, 642228139, 2778852979, 12043194163, 52286516821, 227323871929, 989675651041, 4313712072241, 18822940658947, 82215245701519
Offset: 0
-
Table[Sum[Binomial[n-k,k]*Binomial[n,k]*3^k,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
for(n=0,30,t=polcoeff((1+x+3*x^2)^n,n,x); print1(t","))
A098264
G.f.: 1/(1-2x-19x^2)^(1/2).
Original entry on oeis.org
1, 1, 11, 31, 211, 851, 4901, 22961, 124531, 623011, 3313201, 17086301, 90453661, 473616781, 2509264811, 13250049551, 70368250451, 373539254611, 1989045489281, 10597110956861, 56566637447401, 302196871378601, 1616570627763311, 8654955238504531, 46384344189261661
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-19*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
x='x+O('x^66); Vec(1/(1-2*x-19*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A307855
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 7, 13, 19, 25, 31, 37, ...
1, 19, 49, 91, 145, 211, 289, ...
1, 51, 161, 331, 561, 851, 1201, ...
1, 141, 581, 1441, 2841, 4901, 7741, ...
1, 393, 2045, 5797, 12489, 22961, 38053, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A014431
a(1) = 1, a(2) = 2, a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-2)*a(2) for n >= 3.
Original entry on oeis.org
1, 2, 2, 6, 14, 42, 122, 382, 1206, 3922, 12914, 43190, 145950, 498170, 1714026, 5940014, 20712646, 72623266, 255875298, 905477734, 3216853294, 11469069258, 41023019098, 147166210014, 529374272470, 1908965352434, 6899707805522, 24991194656022, 90698707816766
Offset: 1
-
a:=[1,2]; for n in [3..30] do Append(~a,&+[a[k]*a[n-k]:k in [1..n-2]] ); end for; a; // Marius A. Burtea, Jan 02 2020
-
Rest@ CoefficientList[Series[(1 + x - Sqrt[1 - 2 x - 7 x^2])/2, {x, 0, 27}], x] (* Michael De Vlieger, Jan 02 2020 *)
-
a(n)=polcoeff((1+x-sqrt(1-2*x-7*x^2+x*O(x^n)))/2,n)
A110180
Triangle of generalized central trinomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
Offset: 0
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 7, 5, 1, 1;
1, 19, 13, 7, 1, 1;
-
T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)
A084602
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.
Original entry on oeis.org
1, 1, 1, 3, 1, 2, 7, 6, 9, 1, 3, 12, 19, 36, 27, 27, 1, 4, 18, 40, 91, 120, 162, 108, 81, 1, 5, 25, 70, 185, 331, 555, 630, 675, 405, 243, 1, 6, 33, 110, 330, 726, 1441, 2178, 2970, 2970, 2673, 1458, 729, 1, 7, 42, 161, 539, 1386, 3157, 5797, 9471, 12474, 14553
Offset: 0
Rows:
{1},
{1,1, 3},
{1,2, 7, 6, 9},
{1,3,12, 19, 36, 27, 27},
{1,4,18, 40, 91,120, 162, 108, 81},
{1,5,25, 70,185,331, 555, 630, 675, 405, 243},
{1,6,33,110,330,726,1441,2178,2970,2970,2673,1458,729},
-
With[{eq = (1 + x + 3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n, 0, 10}]]] (* G. C. Greubel, Mar 02 2017 *)
-
for(n=0,15, for(k=0,2*n,t=polcoeff((1+x+3*x^2)^n,k,x); print1(t",")); print(" "))
A098265
G.f. : 1/(1-2x-23x^2)^(1/2).
Original entry on oeis.org
1, 1, 13, 37, 289, 1201, 7741, 38053, 227137, 1207009, 6995053, 38591653, 221446369, 1245188881, 7130897437, 40516456357, 232260610177, 1327920945601, 7627285093069, 43787832627493, 252042452907169, 1451244932278129, 8370001674641917, 48303478743113893, 279083099450496961
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-23*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
x='x+O('x^66); Vec(1/(1-2*x-23*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A115991
Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j)*2^(n-j).
Original entry on oeis.org
1, 1, 1, 5, 3, 1, 13, 9, 5, 1, 49, 31, 17, 7, 1, 161, 105, 61, 29, 9, 1, 581, 371, 217, 111, 45, 11, 1, 2045, 1313, 781, 417, 189, 65, 13, 1, 7393, 4719, 2825, 1551, 753, 303, 89, 15, 1, 26689, 17041, 10277, 5757, 2921, 1289, 461, 117, 17, 1
Offset: 0
Triangle begins as:
1;
1, 1;
5, 3, 1;
13, 9, 5, 1;
49, 31, 17, 7, 1;
161, 105, 61, 29, 9, 1;
581, 371, 217, 111, 45, 11, 1;
-
Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j)) ))); # G. C. Greubel, May 09 2019
-
[[(&+[Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
-
A115991 := proc(n,k)
add(binomial(n-k,j-k)*binomial(j,n-j)*2^(n-j),j=0..n) ;
end proc:
seq(seq(A115991(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
-
Table[Sum[Binomial[n-k, j-k]*Binomial[j, n-j]*2^(n-j), {j, 0, n}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 09 2019 *)
-
{T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j))}; \\ G. C. Greubel, May 09 2019
-
[[sum(binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
Showing 1-10 of 12 results.
Comments