cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046044 Sum of 13 but no fewer nonzero fourth powers.

Original entry on oeis.org

13, 28, 43, 58, 73, 93, 108, 123, 138, 153, 173, 188, 203, 208, 218, 233, 253, 268, 283, 298, 313, 333, 348, 363, 378, 393, 413, 428, 443, 448, 458, 473, 493, 508, 523, 538, 553, 573, 588, 603, 618, 637, 653, 668, 683, 688, 698, 717, 733, 748, 763, 778, 797
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    isSumQ[n_] := Do[pr = PowersRepresentations[n, k, 4]; If[k < 13, If[pr != {} , Return[False]], If[k == 13 && pr != {}, Return[True], Return[False]]], {k, 1, 13}]; Reap[For[n = 1, n <= 800, n++, If[isSumQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2012 *)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A046045 Sum of 14 but no fewer nonzero fourth powers.

Original entry on oeis.org

14, 29, 44, 59, 74, 94, 109, 124, 139, 154, 174, 189, 204, 219, 224, 234, 254, 269, 284, 299, 314, 334, 349, 364, 379, 394, 414, 429, 444, 459, 464, 474, 494, 509, 524, 539, 554, 574, 589, 604, 619, 638, 654, 669, 684, 699, 704, 718, 734, 749, 764, 779, 798
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A257645 a(n) = 15*n + 14.

Original entry on oeis.org

14, 29, 44, 59, 74, 89, 104, 119, 134, 149, 164, 179, 194, 209, 224, 239, 254, 269, 284, 299, 314, 329, 344, 359, 374, 389, 404, 419, 434, 449, 464, 479, 494, 509, 524, 539, 554, 569, 584, 599, 614, 629, 644, 659, 674, 689, 704, 719, 734, 749, 764, 779
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 05 2015

Keywords

Comments

A123159(a(n)) <= 4.
This is not a subsequence of A047725 (for example, 239 is missing in A047725). - Bruno Berselli, Nov 06 2015
Equivalently, intersection of A016897 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

  • Magma
    [15*n+14: n in [0..51]];
    
  • Maple
    seq(15*n+14, n=0..51);
  • Mathematica
    15 Range[50] - 1
  • PARI
    for(n=0, 51, print1(15*n+14, ", "));

Formula

G.f.: (14 + x)/(1 - x)^2.
a(n) = A008597(n+1) - 1. - Omar E. Pol, Nov 05 2015
a(n) = A016897(3n+2) = A175887(2n+2) = A204542(4n+4). - Bruno Berselli, Nov 06 2015
E.g.f.: (15*x + 14)*exp(x). - G. C. Greubel, Apr 23 2018
a(n) = 2*a(n-1)-a(n-2). - Wesley Ivan Hurt, Dec 27 2023
Showing 1-3 of 3 results.