cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069810 Integers k such that gcd(k, sigma(k)) = tau(k).

Original entry on oeis.org

1, 56, 60, 96, 132, 184, 204, 248, 276, 348, 376, 480, 492, 504, 564, 568, 612, 632, 636, 708, 824, 852, 996, 1016, 1068, 1208, 1212, 1248, 1284, 1336, 1356, 1528, 1572, 1592, 1632, 1644, 1784, 1788, 1908, 1912, 1980, 2004, 2076, 2104, 2148, 2168, 2232
Offset: 1

Views

Author

Benoit Cloitre, Apr 30 2002

Keywords

Examples

			The divisors of 56 are 1, 2, 4, 7, 8, 14, 28, 56, so tau(56) = 8 and sigma(56) = 120. As gcd(56, 120) = tau(56) = 8, so 56 belongs to this sequence. - _Bernard Schott_, Oct 18 2019
		

Crossrefs

Subsequence of A047727 (numbers that are arithmetic and refactorable).
Cf. A003601 (arithmetic numbers), A033950 (refactorable numbers).

Programs

  • Magma
    [k:k in [1..2300]| Gcd(k,DivisorSigma(1,k)) eq #Divisors(k)]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    Select[Range[2500], GCD[DivisorSigma[1, #], #] == DivisorSigma[0, #] &] (* Jayanta Basu, Mar 21 2013 *)
  • PARI
    for(n=1,3000,if(gcd(n, sigma(n))==numdiv(n),print1(n,",")))
    

A277368 Numbers such that the number of their divisors divide the sum of their aliquot parts.

Original entry on oeis.org

1, 4, 10, 16, 25, 26, 34, 56, 58, 60, 64, 74, 81, 82, 90, 96, 100, 106, 120, 121, 122, 132, 146, 178, 184, 194, 202, 204, 216, 218, 226, 234, 248, 274, 276, 289, 298, 306, 312, 314, 346, 348, 362, 364, 376, 386, 394, 408, 440, 458, 466, 480, 482, 492, 504, 514
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2016

Keywords

Comments

If p is a prime such that p == 2 (mod 3) then p^2 is a term. Bateman et al. (1981) proved that the asymptotic density of this sequence is 0. - Amiram Eldar, Jan 16 2020

Examples

			sigma(26) - 26 = 42 - 26 = 16, d(26) = 4 and 16 / 4 = 4.
		

References

  • Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.

Crossrefs

Programs

  • Magma
    [k:k in [1..550]| (DivisorSigma(1,k)-k) mod DivisorSigma(0,k) eq 0]; // Marius A. Burtea, Jan 16 2020
  • Maple
    with(numtheory): P:= proc(q) local n; for n from 1 to q do
    if type((sigma(n)-n)/tau(n),integer) then print(n); fi; od; end: P(10^3);
  • Mathematica
    Select[Range@ 520, Mod[DivisorSigma[1, #] - #, DivisorSigma[0, #]] == 0 &] (* Michael De Vlieger, Oct 14 2016 *)
  • PARI
    isok(n) = ((sigma(n) - n) % numdiv(n)) == 0; \\ Michel Marcus, Oct 11 2016
    

Formula

Solutions k to A000005(k) | A001065(k).

A333638 Numbers m such that (m * sigma(m)) / tau(m) is an integer k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Jaroslav Krizek, Mar 30 2020

Keywords

Comments

Corresponding values of integers k: 1, 3, 6, 15, 18, 28, 30, 39, 45, 66, 56, 91, 84, 90, 153, 117, 190, 140, 168, ...
Supersequence of refactorable (A033950), arithmetic (A003601) and refactorable arithmetic numbers (A047727).
Sequence of numbers from this sequence that are neither refactorable nor arithmetic: 10, 26, 32, 34, 50, 58, 63, 74, 75, 82, 90, 98, 106, 117, 120, 122, 130, 146, ...

Examples

			10 is a term because (10 * sigma(10)) / tau(10) = (10 * 18) / 4 = 45 (integer).
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | IsIntegral((&+Divisors(m) * m) / #Divisors(m))]
    
  • Mathematica
    Select[Range[100], Divisible[# * DivisorSigma[1, #], DivisorSigma[0, #]] &] (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    isok(m) = (m*sigma(m) % numdiv(m)) == 0; \\ Michel Marcus, Mar 31 2020
Showing 1-3 of 3 results.