cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047772 Dissections: bisection of A047771.

Original entry on oeis.org

0, 0, 1, 8, 42, 232, 1277, 7183, 41041, 238315, 1402076, 8343804, 50136483, 303790544, 1854115285, 11388104153, 70338364135, 436605050440, 2722153369473, 17040017600925, 107052073186950, 674752469797923, 4265733944934540
Offset: 1

Views

Author

Keywords

Comments

Also related to enumeration of alkane systems - see Cyvin reference for precise definition.
Also A047758(4n+1).

A007173 Number of simplicial 3-clusters with n cells.

Original entry on oeis.org

1, 1, 1, 4, 10, 40, 171, 831, 4147, 21822, 117062, 642600, 3582322, 20256885, 115888201, 669911568, 3907720521, 22979343010, 136107859377, 811430160282, 4866004426320, 29337068299728, 177738920836446, 1081668278379000, 6609923004626478, 40546403939165805
Offset: 1

Views

Author

Keywords

Comments

Also arises in enumeration of stereoisomers of alkane systems.
"A simplicial d-cluster may be informally described as being constructed by gluing regular d-simplexes together facet-by-facet, at each stage gluing a new simplex to exactly one facet of a cluster already constructed. The equivalence classes of such clusters under rigid motions are in one-to-one correspondence with the combinatorial types of stack polytopes." [Hering et al., 1982] - Jonathan Vos Post, Apr 22 2011
The Hering article has an error in the 14th term. - Robert A. Russell, Apr 11 2012
Also same as A027610 with mirror-image not treated as equivalence. - Brendan McKay, Mar 08 2014
Number of oriented polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Mar 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) plus twice sum of chiral symmetry types (A047776, A047774, A047762, A047758, A047752, A047769, A047766 [type O]) in Beineke article.
Cf. A027610 (unoriented), A371350 (chiral), A371351 (achiral), A001764 (rooted), A001683(n+2) {3,oo}, A007175 {3,3,3,oo}.

Programs

  • Mathematica
    Table[Binomial[3 n, n]/(3 (2 n + 1) (2 n + 2)) + If[OddQ[n], Binomial[3 (n - 1)/2 + 1, n]/(n + 1), Binomial[3 n/2, n]/(n + 1)]/2 + 2 Switch[Mod[n, 3], 0, 0, 1, Binomial[n, (n - 1)/3]/n, 2, Binomial[n, (n - 2)/3]/n]/3, {n, 1, 30}] (* Robert A. Russell, Apr 11 2012 *)

Formula

From Robert A. Russell, Mar 20 2024: (Start)
a(n) = C(3n,n)/(3*(2n+1)*(2n+2)) + ([0==n mod 2]*C(3n/2,n) + [1==n mod 2]*C((3n-1)/2,(n-1)/2)) / (2n+2) + 2*([1==n mod 3]*C(n,(n-1)/3) + [2==n mod 3]*C(n,(n-2)/3)) / (3n).
a(n) = A027610(n) + A371350(n) = 2*A027610(n) - A371351(n) = 2*A371350(n) + A371351(n).
a(n) = H(3,n) in Table 8 of Hering link.
G.f.: (-8 + 4*G(z) - 2*G(z)^2 + z*G(z)^4 + 6*G(z^2) + 3z*G(z^2)^2 + 8z*G(z^3) + 4z^2*G(z^3)^2)/12, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

a(14) corrected and additional terms from Robert A. Russell, Apr 11 2012

A027610 The number of Apollonian networks (planar 3-trees) with n+3 vertices.

Original entry on oeis.org

1, 1, 1, 3, 7, 24, 93, 434, 2110, 11002, 58713, 321776, 1792133, 10131027, 57949430, 334970205, 1953890318, 11489753730, 68054102361, 405715557048, 2433003221232, 14668536954744, 88869466378593, 540834155878536, 3304961537938269, 20273202069859769
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Number of chordal planar triangulations; also number of planar triangulations with maximal number of triangles; also number of graphs obtained from the tetrahedron by repeatedly inserting vertices of degree 3 into a triangular face; also number of uniquely 4-colorable planar graphs; also number of simplicial 3-clusters with n cells; also Apollonian networks with n+3 vertices.
Also arises in enumeration of spectral isomers of alkane systems (see Cyvin et al.). - N. J. A. Sloane, Aug 15 2006
Chordal planar triangulations: take planar triangulations on n nodes, divide them into classes according to how many triangles they contain (all have 2n-4 triangular faces but may have additional triangles); count triangulations in class with most triangles.
If mirror images are not taken as equivalent, A007173 is obtained instead. - Brendan McKay, Mar 08 2014
Number of unoriented polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Mar 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007173 (oriented), A371350 (chiral), A371351 (achiral), A001764 (rooted), A000207 {3,oo}, A182322 {3,3,3,oo}.

Programs

Formula

From Robert A. Russell, Mar 20 2024: (Start)
a(n) = C(3n,n)/(6*(2n+1)*(2n+2)) + ([0==n mod 2]*7*C(3n/2,n) + [1==n mod 2]*9*C((3n-1)/2,n)) / (12(n+1)) + [1==n mod 3]*C(n-1,(n-1)/3)/(2n+1) + [2==n mod 3]*C(n-1,(n-2)/3)/(2n+2) + [1==n mod 4]*C((3n-3)/4,(n-1)/2)/(2n+2) + [2==n mod 6]*C(n/2-1,(n-2)/3)/(2n+2).
a(n) = A007173(n) - A371350(n) = (A007173(n) + A371351(n))/2 = A371350(n) + A371351(n).
a(n) = h(3,n) in Table 8 of Hering link.
G.f.: (-16 + 4*G(z) - 2*G(z)^2 + z*G(z)^4 + 14*G(z^2) + 9z*G(z^2)^2 + 8z*G(z^3) + 4z^2*G(z^3)^2 + 6z*G(z^4) + 4z^2*G(z^6))/24, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

One additional term from Robert A. Russell, Apr 11 2012
Noted the name "Apollonian network" by Brendan McKay, Mar 08 2014
New name from Allan Bickle, Feb 21 2024

A371351 Number of achiral polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 37, 73, 182, 364, 952, 1944, 5169, 10659, 28842, 60115, 164450, 345345, 953814, 2016144, 5609760, 11920740, 33378072, 71250060, 200553733, 429757960, 1215177680, 2612635888, 7416503776
Offset: 1

Views

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of achiral simplicial 3-clusters or stack polytopes with n tetrahedral cells. An achiral polyomino is identical to its reflection.

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) in Beineke link.
Cf. A007173 (oriented), A027610 (oriented), A371350 (chiral), A001764 (rooted), A208355(n-1) {3,oo}, A182299 {3,3,3,oo}.

Programs

  • Mathematica
    Table[(If[OddQ[n],3Binomial[(3n-1)/2,n],2Binomial[3n/2,n]]+If[1==Mod[n,4],3Binomial[(3n-3)/4,(n-1)/2],0]+If[2==Mod[n,6],3Binomial[n/2-1,(n-2)/3],0])/(3n+3),{n,30}]

Formula

a(n) = ([0==n mod 2]*2*C(3n/2,n) + [1==n mod 2]*3*C((3n-1)/2,n) + [1==n mod4]*3*C((3n-3)/4,(n-1)/2) + [2==n mod6]*3*C(n/2-1,(n-2)/3)) / (3n+3).
a(n) = 2*A027610(n) - A007173(n) = A007173(n) - 2*A371350(n) = A027610(n) - A371350(n).
a(n) = 2*H(3,n) - h(3,n) in Table 8 of Hering link.
G.f.: (-4 + 4*G(z^2) + 3z*G(z^2)^2 + 3z*G(z^4) + 2z^2*G(z^6)) / 6, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764.

A047776 Number of chiral pairs of asymmetric dissectable polyhedra with n tetrahedral cells (type A).

Original entry on oeis.org

0, 0, 0, 0, 2, 11, 71, 370, 2005, 10682, 58167, 320116, 1789210, 10121965, 57933469, 334919626, 1953800059, 11489466014, 68053583772, 405713887061, 2433000197471, 14668527134167, 88869448492895, 540834097467624, 3304961431043989, 20273201718862728, 124798671079300720, 770762029389852807
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both asymmetric (type A) with n tetrahedral cells. The order of the symmetry group is 1. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 31 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047775 (type B), A047774 (type C). A047773 (type D), A047762 (type E), A047760 (type F), A047758 (type G), A047754 (type H), A047753 (type I), A047752 (type J), A047751 (type K), A047771 (type L), A047769 (type M), A047766 (type N|O), A047765 (type P), A047764 (type Q).

Programs

  • Mathematica
    Table[If[n < 5, 0, Binomial[3 n, 2 n + 2]/(3 n (n - 1))
        - If[OddQ[n], Binomial[3 n/2 - 1/2, n + 1] 3/(n - 1),
         7 Binomial[3 n/2, n + 1]/(3 n)]
        - Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 + 1/3]/(n - 1), 2,
         Binomial[n - 1, 2 n/3 + 2/3]/(n - 2), _, 0]
        + Switch[Mod[n, 4], 1, Binomial[3 n/4 - 3/4, n/2 + 1/2] 2/(3 (n - 1))
          + Binomial[3 n/4 + 1/4, n/2 + 3/2] 4/(n - 1) +
          Binomial[3 n/4 - 3/4, n/2 + 1/2] 4/(n + 3), 2,
         Binomial[3 n/4 - 1/2, n/2 + 1] 8/(n - 2), 3,
         Binomial[3 n/4 - 1/4, n/2 + 3/2] 12/(n - 3), 0,
         Binomial[3 n/4 - 1, n/2 + 1] 12/(n - 4)] +
        Switch[Mod[n, 6], 1, Binomial[n/2 - 1/2, n/3 + 2/3] 6/(n - 1), 2,
         Binomial[n/2 - 1, n/3 + 1/3] 4/(n - 2) +
          Binomial[n/2, n/3 + 4/3] 6/(n - 2) +
          Binomial[n/2 - 1, n/3 + 1/3] 6/(n + 4), 4,
         Binomial[n/2 - 1, n/3 + 2/3] 12/(n - 4), 5,
         Binomial[n/2 - 1/2, n/3 + 1/3] 9/(n + 4), _, 0] +
        Switch[Mod[n, 12], 2, -Binomial[n/4 - 1/2, n/6 + 2/3] 12/(n - 2), 5,
         Binomial[n/4 - 5/4, n/6 - 5/6] 2/(n + 1),
         8, -Binomial[n/4 - 1, n/6 - 1/3] 12/(n + 4), _, 0] -
        Switch[Mod[n, 24], 5, Binomial[n/8 - 5/8, n/12 - 5/12] 12/(n + 7), 17,
         Binomial[n/8 - 9/8, n/12 - 5/12] 24/(n + 7), , 0]]/2, {n, 1, 60}] (* _Robert A. Russell, Apr 09 2012 *)

Formula

From Robert A. Russell, Mar 31 2024: (Start)
a(n) = A001764(n)/(12(n+1)) - A047775(n)/2 - A047774(n)/3 - A047773(n)/6 - A047762(n)/2 - A047760(n)/4 - A047758(n)/4 - A047754(n)/4 - A047753(n)/8 - A047752(n)/12 - A047751(n)/24 - A047771(n)/2 - A047769(n)/2 - A047766(n)/6 - A047766(n)/6 - A047765(n)/4 - A047764(n)/12.
G.f.: (G(z^4) + G(z^6) - 2)/(2z) - z/3 + G(z)/6 - G(z)^2/12 + z*G(z)^4/24 - 7*G(z^2)/12 - 3z*G(z^2)^2/8 - z*G(z^3)/6 - z^2*G(z^3)^2/12 + G(z^4)/2 - z*G(z^4)/6 + (z*G(z^4)^2 + z^2*G(z^4)^2 + z*G(z^6))/2 + z^2*G(z^6)/12 + (z^2*G(z^6)^2 + z^4*G(z^6)^2 - z^2*G(z^12))/2 + z^5*G(z^12)/6 - (z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2)/2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)
Showing 1-5 of 5 results.