cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047926 a(n) = (3^(n+1) + 2*n + 1)/4.

Original entry on oeis.org

1, 3, 8, 22, 63, 185, 550, 1644, 4925, 14767, 44292, 132866, 398587, 1195749, 3587234, 10761688, 32285049, 96855131, 290565376, 871696110, 2615088311, 7845264913, 23535794718, 70607384132, 211822152373, 635466457095, 1906399371260
Offset: 0

Views

Author

Keywords

Comments

Density of regular language L{0}* over {0,1,2,3} (i.e., number of strings of length n in L), where L is described by regular expression with c=3: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*)0*) - Nelma Moreira, Oct 10 2004
Conjecture: Number of representations of 3^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c. That is, a(1) = 3 because 3^2 = 1^2 + 2^2 + 2^2, a(2) = 3 because 3^4 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2. - Zak Seidov, Mar 01 2012

References

  • M. Aigner, Combinatorial Search, Wiley, 1988, see Exercise 6.4.5.

Crossrefs

Cf. A007051.

Programs

  • Magma
    [(3^(n+1)+2*n+1)/4: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(3^(n+1)+2n+1)/4,{n,0,30}] (* or *) LinearRecurrence[{5,-7,3},{1,3,8},30] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    a(n)=(3^(n+1)+2*n+1)/4 \\ Charles R Greathouse IV, Mar 02 2012
  • Sage
    [(gaussian_binomial(n,1,3)+n)/2 for n in range(1,28)] # Zerinvary Lajos, May 29 2009
    

Formula

From Paul Barry, Sep 03 2003: (Start)
a(n) = Sum_{k=0..n} (3^k + 1)/2. Partial sums of A007051.
G.f.: (1 - 2*x)/((1 - x)^2*(1 - 3*x)). (End)
For c = 3, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k-1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
a(n+1) = 3*a(n) - n. - Franklin T. Adams-Watters, Jul 05 2014
E.g.f.: exp(x)*(1 + 2*x + 3*exp(2*x))/4. - Stefano Spezia, Sep 26 2023