A047926 a(n) = (3^(n+1) + 2*n + 1)/4.
1, 3, 8, 22, 63, 185, 550, 1644, 4925, 14767, 44292, 132866, 398587, 1195749, 3587234, 10761688, 32285049, 96855131, 290565376, 871696110, 2615088311, 7845264913, 23535794718, 70607384132, 211822152373, 635466457095, 1906399371260
Offset: 0
References
- M. Aigner, Combinatorial Search, Wiley, 1988, see Exercise 6.4.5.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
- N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Crossrefs
Cf. A007051.
Programs
-
Magma
[(3^(n+1)+2*n+1)/4: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Mathematica
Table[(3^(n+1)+2n+1)/4,{n,0,30}] (* or *) LinearRecurrence[{5,-7,3},{1,3,8},30] (* Harvey P. Dale, Apr 19 2019 *)
-
PARI
a(n)=(3^(n+1)+2*n+1)/4 \\ Charles R Greathouse IV, Mar 02 2012
-
Sage
[(gaussian_binomial(n,1,3)+n)/2 for n in range(1,28)] # Zerinvary Lajos, May 29 2009
Formula
From Paul Barry, Sep 03 2003: (Start)
a(n) = Sum_{k=0..n} (3^k + 1)/2. Partial sums of A007051.
G.f.: (1 - 2*x)/((1 - x)^2*(1 - 3*x)). (End)
For c = 3, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k-1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
a(n+1) = 3*a(n) - n. - Franklin T. Adams-Watters, Jul 05 2014
E.g.f.: exp(x)*(1 + 2*x + 3*exp(2*x))/4. - Stefano Spezia, Sep 26 2023
Comments