cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A094176 (A047926(n)-A091588(n))/2.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 15, 43, 127, 383, 1143, 3423, 10264, 30785
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2004

Keywords

Comments

A091588 remains mysterious, but A047926 is reasonably close to it.

Crossrefs

A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.

Original entry on oeis.org

1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1

Views

Author

Keywords

Comments

Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
  • E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
Column k=3 of A047969.

Programs

  • Haskell
    a005917 n = a005917_list !! (n-1)
    a005917_list = map sum $ f 1 [1, 3 ..] where
       f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Magma
    [n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
    
  • Mathematica
    Table[n^4-(n-1)^4,{n,40}]  (* Harvey P. Dale, Apr 01 2011 *)
    #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
    Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    A005917_list, m = [], [24, -12, 2, 1]
    for _ in range(10**2):
        A005917_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

Formula

a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
Sum_{i=1..n} a(i) = n^4 = A000583(n). First differences of A000583.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n) = -a(-n+1). a(n) = (1/6)*(A181475(n) - A181475(n-2)). - Bruno Berselli, Sep 26 2011
a(n) = A045975(2*n-1,n) = A204558(2*n-1)/(2*n - 1). - Reinhard Zumkeller, Jan 18 2012
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
a(n) = A300758(n-1) + A005408(n-1). - Bruce J. Nicholson, Apr 23 2020
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A094195 Expansion of g.f.: (1-4*x)/((1-5*x)*(1-x)^2).

Original entry on oeis.org

1, 3, 10, 42, 199, 981, 4888, 24420, 122077, 610359, 3051766, 15258798, 76293955, 381469737, 1907348644, 9536743176, 47683715833, 238418579115, 1192092895522, 5960464477554, 29802322387711, 149011611938493, 745058059692400, 3725290298461932, 18626451492309589
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2004

Keywords

Comments

An approximation to A091843.

Crossrefs

Programs

  • Magma
    [(5^(n+1) +12*n +11)/16: n in [0..40]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    CoefficientList[Series[(1-4x)/((1-5x)(1-x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{7,-11,5},{1,3,10},30] (* Harvey P. Dale, Dec 31 2011 *)
  • SageMath
    [(5^(n+1) +12*n +11)/16 for n in range(41)] # G. C. Greubel, Aug 18 2023

Formula

a(n) = (5^(n+1) + 12*n + 11)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), with a(0)=1, a(1)=3, a(2)=10. - Harvey P. Dale, Dec 31 2011
E.g.f.: (1/16)*(5*exp(5*x) + (11 + 12*x)*exp(x)). - G. C. Greubel, Aug 18 2023

A094250 Array, A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 1, 3, 8, 15, 1, 3, 9, 22, 31, 1, 3, 10, 31, 63, 63, 1, 3, 11, 42, 117, 185, 127, 1, 3, 12, 55, 199, 459, 550, 255, 1, 3, 13, 70, 315, 981, 1825, 1644, 511, 1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023, 1, 3, 15, 106, 673, 3273, 11203, 24420, 29133, 14767, 2047
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2004

Keywords

Examples

			Array, A(n, k), begins:
  1, 3,  7, 15,  31,   63,   127,    255,     511, ... A000225;
  1, 3,  8, 22,  63,  185,   550,   1644,    4925, ... A047926;
  1, 3,  9, 31, 117,  459,  1825,   7287,   29133, ... A073724;
  1, 3, 10, 42, 199,  981,  4888,  24420,  122077, ... A094195;
  1, 3, 11, 55, 315, 1871, 11203,  67191,  403115, ... A094259;
  1, 3, 12, 70, 471, 3273, 22882, 160140, 1120941, ...
Antidiagonals, T(n, k), begins as:
  1;
  1, 3;
  1, 3,  7;
  1, 3,  8, 15;
  1, 3,  9, 22,  31;
  1, 3, 10, 31,  63,   63;
  1, 3, 11, 42, 117,  185,  127;
  1, 3, 12, 55, 199,  459,  550,  255;
  1, 3, 13, 70, 315,  981, 1825, 1644,  511;
  1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023;
		

Crossrefs

Programs

  • Magma
    A094250:= func< n,k | ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 >;
    [A094250(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    A094250[n_, k_]:= ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2;
    Table[A094250[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    def A094250(n, k): return ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2
    flatten([[A094250(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023

Formula

A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2 (array).
T(n, k) = ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 (antidiagonals).
G.f. for row n: (1-(n+1)*x)/((1-(n+2)*x)*(1-x)^2).

A342354 M(n,k) = 2*n^2 + 2*k + 1 for 0 <= k <= n and M(n,k) = 2*k^2 + 4*k - 2*n + 1 for 0 <= n <= k; square array M(n,k) read by ascending antidiagonals (n, k >= 0).

Original entry on oeis.org

1, 3, 7, 9, 5, 17, 19, 11, 15, 31, 33, 21, 13, 29, 49, 51, 35, 23, 27, 47, 71, 73, 53, 37, 25, 45, 69, 97, 99, 75, 55, 39, 43, 67, 95, 127, 129, 101, 77, 57, 41, 65, 93, 125, 161, 163, 131, 103, 79, 59, 63, 91, 123, 159, 199, 201, 165, 133, 105, 81, 61, 89, 121, 157, 197, 241, 243, 203, 167, 135, 107, 83, 87, 119, 155, 195, 239, 287
Offset: 0

Views

Author

Petros Hadjicostas, Mar 08 2021

Keywords

Comments

This is a square array defined by J. M. Bergot in A005917 (originally by mistake in A047926). Here is the edited description of the array by this contributor.
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals A005917(n+1).

Examples

			Square array M(n,k) (n, k >= 0) begins:
   1,  7, 17, 31, 49, 71, 97, 127, ...
   3,  5, 15, 29, 47, 69, 95, 125, ...
   9, 11, 13, 27, 45, 67, 93, 123, ...
  19, 21, 23, 25, 43, 65, 91, 121, ...
  33, 35, 37, 39, 41, 63, 89, 119, ...
  51, 53, 55, 57, 59, 61, 87, 117, ...
  73, 75, 77, 79, 81, 83, 85, 115, ...
  ...
The triangular array T(n,k) = M(n-k,k) (with rows n >= 0 and columns k = 0..n) is obtained by reading array M by ascending antidiagonals:
   1;
   3,  7;
   9,  5, 17;
  19, 11, 15, 31;
  33, 21, 13, 29, 49;
  51, 35, 23, 27, 47, 71;
  73, 53, 37, 25, 45, 69, 97;
  99, 75, 55, 39, 43, 67, 95, 127;
  ...
		

Crossrefs

Antidiagonal sums are in A342362.

Programs

  • PARI
    tabl(nn) = {my(M=matrix(nn+1,nn+1)); for(n=1, nn+1, for(k=1, nn+1, M[n,k]=if(k == n, 2*n^2-2*n+1, if(k < n, 2*n^2-4*n+2*k+1, 2*k^2-2*n+1)))); M}

Formula

O.g.f. for rectangular M: (x^4*y^4 + 4*x^3*y^4 + 3*x^4*y^2 - 18*x^3*y^3 - x^2*y^4 + 8*x^3*y^2 + 4*x^2*y^3 - 10*x^3*y + 10*x^2*y^2 - 2*x*y^3 + 8*x^2*y + 4*x*y^2 + 3*x^2 - 18*x*y - y^2 + 4*y + 1)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2).
O.g.f. for triangular T: (x^8*y^4 + 4*x^7*y^4 - x^6*y^4 - 18*x^6*y^3 + 3*x^6*y^2 + 4*x^5*y^3 + 8*x^5*y^2 - 2*x^4*y^3 + 10*x^4*y^2 - 10*x^4*y + 4*x^3*y^2 + 8*x^3*y - x^2*y^2 - 18*x^2*y + 3*x^2 + 4*x*y + 1)/((1 - x)^3*(1 - x*y)^3*(1 - x^2*y)^2).

A067337 Triangle where T(n,k)=2*T(n,k-1)+C(n-1,k)-C(n-1,k-1) and n>=k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 9, 1, 4, 8, 14, 27, 1, 5, 12, 22, 41, 81, 1, 6, 17, 34, 63, 122, 243, 1, 7, 23, 51, 97, 185, 365, 729, 1, 8, 30, 74, 148, 282, 550, 1094, 2187, 1, 9, 38, 104, 222, 430, 832, 1644, 3281, 6561, 1, 10, 47, 142, 326, 652, 1262, 2476, 4925, 9842
Offset: 0

Views

Author

Henry Bottomley, Jan 15 2002

Keywords

Examples

			Rows start 1; 1,1; 1,2,3; 1,3,5,9; 1,4,8,14,27; etc. T(4,0)=2*0+1-0=1; T(4,1)=2*1+3-1=4; T(4,2)=2*4+3-3=8; T(4,3)=2*8+1-3=14; T(4,4)=2*14+0-1=27.
		

Crossrefs

Row sums are A025192. Columns include A000012, A000027 and A022856 (essentially). Right hand columns include A000244 (essentially), A007051 and A047926. Central diagonal is A067336.

Formula

T(n, k)=2*T(n, k-1)+A037012(n, k). T(n, k)=T(n-1, k-1)+T(n-1, k) if k0.

A194272 Array T(n,k) with 6 columns read by rows in which row n lists 3*n-2, 3*n-1, 3*n, 3*n, 3*n, 3*n.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 19, 20, 21, 21, 21, 21, 22, 23, 24, 24, 24, 24, 25, 26, 27, 27, 27, 27, 28, 29, 30, 30, 30, 30, 31, 32, 33, 33, 33, 33, 34, 35, 36, 36, 36, 36
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Also first differences of A194273 which is also a sequence related to cellular automata.

Examples

			Array begins:
1,  2,  3,  3,  3,  3,
4,  5,  6,  6,  6,  6,
7,  8,  9,  9,  9,  9,
10, 11, 12, 12, 12, 12,
13, 14, 15, 15, 15, 15,
16, 17, 18, 18, 18, 18,
19, 20, 21, 21, 21, 21,
22, 23, 24, 24, 24, 24,
...
Sum of row n gives 18*n-3 = A008600(n) - 3.
G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ...
		

Crossrefs

Column 1: A016777. Column 2: A016789. Every column 3, 4, 5 and 6: positive integers of A008585.

Programs

  • Magma
    [Floor((n+3)/6) + Floor((n+4)/6) + Floor((n+5)/6) : n in [1..100]]; // Wesley Ivan Hurt, Apr 04 2015
    
  • Maple
    A194272:=n->floor((n+3)/6) + floor((n+4)/6) + floor((n+5)/6): seq(A194272(n), n=1..100); # Wesley Ivan Hurt, Apr 04 2015
  • Mathematica
    Table[Floor[(n + 3)/6] + Floor[(n + 4)/6] + Floor[(n + 5)/6], {n, 100}] (* Wesley Ivan Hurt, Apr 04 2015 *)
  • PARI
    x='x+O('x^60); Vec(x*(1-x^3)/((1-x)^2*(1-x^6))) \\ G. C. Greubel, Aug 13 2018

Formula

From Michael Somos, May 12 2014: (Start)
Euler transform of length 6 sequence [2, 0, -1, 0, 0, 1].
G.f.: x * (1-x^3) / ( (1-x)^2 * (1-x^6) ).
a(n-1) = A047926(n) - A132868(n). (End)
From Wesley Ivan Hurt, Apr 04 2015, Sep 08 2015: (Start)
a(n) = 2*a(n-1)-a(n-2)-a(n-3)+2*a(n-4)-a(n-5), n>5.
a(n) = floor((n+3)/6) + floor((n+4)/6) + floor((n+5)/6).
a(n) = Sum_{i=0..n-1} floor(i/6) - floor((i-3)/6). (End)

A087438 a(n) = 3*2^(2*(n-1)) + 2^(n-2)*(n+1).

Original entry on oeis.org

1, 4, 15, 56, 212, 816, 3184, 12544, 49728, 197888, 789248, 3151872, 12596224, 50360320, 201388032, 805437440, 3221504000, 12885491712, 51540852736, 206161051648, 824639225856, 3298546417664, 13194163650560, 52776608464896
Offset: 0

Views

Author

Paul Barry, Sep 03 2003

Keywords

Comments

Binomial transform of A047926.

Programs

  • Magma
    [3*2^(2*(n-1))+2^(n-2)*(n+1): n in [0..25]]; // Vincenzo Librandi, May 21 2011
  • Mathematica
    LinearRecurrence[{8,-20,16},{1,4,15},30] (* or *) CoefficientList[ Series[ (1-4x+3x^2)/((1-2x)^2(1-4x)),{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)

Formula

G.f.: (1 - 4*x + 3*x^2)/((1-2*x)^2*(1-4*x)).
E.g.f.: (3*exp(4*x) + (1+2*x)*exp(2*x))/4.
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3); a(0)=1, a(1)=4, a(2)=15. - Harvey P. Dale, May 20 2011

A099265 Partial sums of A056272.

Original entry on oeis.org

1, 3, 8, 23, 75, 277, 1132, 4977, 22979, 109451, 531456, 2610931, 12917683, 64181625, 319695980, 1594859885, 7963472187, 39784944799, 198827606704, 993846943839, 4968361974491, 24839192686973, 124188113975628, 620917025694793, 3104514504312595, 15522360665856147, 77611167795714752
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Density of regular language L{0}* over {0, 1, 2, 3, 4, 5} (i.e., the number of strings of length n), where L is described by regular expression with c = 5: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11* + 11*2(1 + 2)* + ... + 11*2(1 + 2)*3(1 + 2 + 3)*4(1 + 2 + 3 + 4)*5(1 + 2 + 3 + 4 + 5)*)0*).

Crossrefs

Programs

  • Maple
    with (combinat):seq(sum(sum(stirling2(k, j),j=1..5), k=1..n), n=1..23); # Zerinvary Lajos, Dec 04 2007
  • PARI
    a(n) = sum(m=1, n, sum(i=1, 5, stirling(m, i, 2))) \\ Petros Hadjicostas, Mar 10 2021

Formula

a(5,n) = (1/96)*5^n + (1/8)*3^n + (1/3)*2^n + (3/8)*n - 15/32.
a(n) = Sum_{m=1..n} Sum_{i=1..5} S(m,i), where S(m,i) = A008277(m,i) (i.e., partial sum of the sum of Stirling numbers of second kind S(n,i) for i = 1..5).
For c = 5, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k - 1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c.
G.f.: x*(-1 + 19*x^3 - 24*x^2 + 9*x)/((3*x-1)*(2*x-1)*(5*x-1)*(x-1)^2). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

Extensions

Name and Formula section edited by Petros Hadjicostas, Mar 10 2021
More terms from Michel Marcus, Jan 05 2025

A099266 Partial sums of A056273.

Original entry on oeis.org

1, 3, 8, 23, 75, 278, 1154, 5265, 25913, 135212, 736704, 4139831, 23767895, 138468210, 814675838, 4824766301, 28699128501, 171207852152, 1023332115836, 6124430348355, 36684624841811, 219860794899518, 1318179574171578
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Some previous names were a(6,n) := (1/600)*6^n + (1/36)*4^n + (1/12)*3^n + (3/8)*2^n + (11/30)*n - (439/900) = Sum_{m=1..n} Sum_{i=1..6} S(m,i), where S(n,i) = A008277(n,i) are the Stirling numbers of the second kind.
Density of the regular language L{0}* over {0, 1, 2, 3, 4, 5, 6} (i.e., the number of strings of length n), where L is described by regular expression with c = 6: Sum_{i=1..c} Prod_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11* + ... + 11*2(1 + 2)*3(1 + 2 + 3)*4(1 + 2 + 3 + 4)*5(1 + 2 + 3 + 4 + 5)*6(1 + 2 + 3 + 4 + 5 + 6)*)0*).

Crossrefs

Programs

  • Maple
    with (combinat):seq(sum(sum(stirling2(k, j),j=1..6), k=1..n), n=1..23); # Zerinvary Lajos, Dec 04 2007
  • PARI
    Vec(x*(91*x^4-135*x^3+68*x^2-14*x+1)/((x-1)^2*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Oct 28 2014
    
  • PARI
    a(n) = sum(m=1, n, sum(i=1, 6, stirling(m, i, 2))) \\ Petros Hadjicostas, Mar 09 2021

Formula

For c = 6, a(c, n) = g(1, c)*n + Sum_{k=2..c} g(k, c)*k*(k^n - 1)/(k - 1), where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c.
G.f.: x*(91*x^4 - 135*x^3 + 68*x^2 - 14*x + 1) / ((x - 1)^2*(2*x - 1)*(3*x - 1)*(4*x - 1)*(6*x - 1)). - Colin Barker, Oct 28 2014

Extensions

Shorter name by Joerg Arndt, Oct 28 2014
Comments edited by Petros Hadjicostas, Mar 09 2021
Showing 1-10 of 15 results. Next