cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046698 a(0) = 0, a(1) = 1, a(n) = a(a(n-1)) + a(a(n-2)) if n > 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Partial sums are A004275. Binomial transform is A048492, starting with 0. - Paul Barry, Feb 28 2003
From Elmo R. Oliveira, Jul 25 2024: (Start)
Continued fraction expansion of 2 - sqrt(2) = A101465.
Decimal expansion of 101/9000. (End)

References

  • Sequence proposed by Reg Allenby.

Crossrefs

Cf. A004275, A048492, A101465 (decimal expansion of 2 - sqrt(2)).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x^2)/(1 - x), {x, 0, 104}], x] (* or *)
    Nest[Append[#, #[[#[[-1]] + 1]] + #[[#[[-2]] + 1 ]]] &, {0, 1}, 105] (* Michael De Vlieger, Jul 31 2020 *)
  • PARI
    a(n)=(n>0)+(n>2)

Formula

G.f.: x*(1+x^2)/(1-x). - Paul Barry, Feb 28 2003
From Elmo R. Oliveira, Jul 25 2024: (Start)
E.g.f.: 2*exp(x) - x - 1.
a(n) = 2 for n > 2.
a(n) = 2 - A033324(n+2) = 4 - A343461(n+4) = A114955(n+6) - 6. (End)

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A145070 Partial sums of A006127, starting at n=1.

Original entry on oeis.org

3, 9, 20, 40, 77, 147, 282, 546, 1067, 2101, 4160, 8268, 16473, 32871, 65654, 131206, 262295, 524457, 1048764, 2097360, 4194533, 8388859, 16777490, 33554730, 67109187, 134218077, 268435832, 536871316, 1073742257, 2147484111
Offset: 1

Views

Author

Keywords

Examples

			a(2) = a(1) + 2^2 + 2 = 3 + 4 + 2 = 9; a(3) = a(2) + 2^3 + 3 = 9 + 8 + 3 = 20.
		

Crossrefs

Cf. A006127 (2^n + n), A000325 (2^n - n), A048492 (partial sums of A000325, starting at n=1).

Programs

  • ARIBAS
    a:=0; for n:=1 to 30 do a:=a+2**n+n; write(a, ","); end;
    
  • Maple
    A145070:=n->(-4+2^(2+n)+n+n^2)/2: seq(A145070(n), n=1..50); # Wesley Ivan Hurt, Jan 22 2017
  • Mathematica
    lst={};s=0;Do[s+=2^n+n;AppendTo[lst,s],{n,5!}];lst
    Accumulate[Table[2^n+n,{n,50}]] (* or *) LinearRecurrence[{5,-9,7,-2},{3,9,20,40},50] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    Vec(x*(2*x^2-6*x+3) / ((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014

Formula

a(1) = 3; a(n) = a(n-1) + 2^n + n for n > 1.
From Colin Barker, Oct 27 2014: (Start)
a(n) = (-4+2^(2+n)+n+n^2)/2.
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4).
G.f.: x*(2*x^2-6*x+3) / ((x-1)^3*(2*x-1)).
(End)

Extensions

Edited by Klaus Brockhaus, Oct 14 2008
Showing 1-3 of 3 results.