cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A048519 Prime plus its digit sum equals a prime.

Original entry on oeis.org

11, 13, 19, 37, 53, 59, 71, 73, 97, 101, 103, 127, 149, 163, 167, 181, 233, 257, 271, 277, 293, 307, 367, 383, 389, 419, 431, 433, 479, 499, 509, 547, 563, 587, 617, 631, 701, 727, 743, 787, 811, 839, 857, 859, 947, 1009, 1049, 1061, 1087, 1153, 1171
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

For any prime p, p +- digitsum(p, base b) can't be prime unless the base b is even, since in an odd base, an odd number always has an odd digit sum (powers of b are congruent to b (mod 2)), so p +- digitsum(p, base b) is even for odd b. This sequence is for b = 10 (where "-" is also excluded, see comment in A243442), see A243441 for b = 2. - M. F. Hasler, Nov 06 2018
See subsequence A048523 for primes which only once give another prime under iteration of A062028, and A048524 .. A048527, A320878 .. A320880 for primes starting longer chains. See A090009 for their initial terms, starting the earliest chain of given length. - M. F. Hasler, Nov 09 2018

Examples

			a(9) = prime 97 because 97 + sum-of-digits(97) = 97 + 16 = 113 also a prime.
		

Crossrefs

Cf. A007953 (digit sum), A062028 (n + digit sum of n), A047791 (A062028(n) is prime), A048520.

Programs

  • Haskell
    a048519 n = a048519_list !! (n-1)
    a048519_list = map a000040 $ filter ((== 1) . a010051' . a065073) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Magma
    [p: p in PrimesUpTo(1200) | IsPrime(q) where q is p+&+Intseq(p)]; // Vincenzo Librandi, Jan 30 2018
  • Maple
    select(n -> isprime(n) and isprime(n + convert(convert(n,base,10),`+`)), [$1..10^4]); # Robert Israel, Aug 10 2014
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[#+Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    select( is(p)=isprime(p+sumdigits(p))&&isprime(p), primes([0,2000])) \\ M. F. Hasler, Aug 08 2014, edited Nov 09 2018
    

Formula

Primes in A047791, i.e., intersection of A047791 and A000040. - M. F. Hasler, Nov 08 2018

A048521 Primes expressible as the sum of an integer plus its digit sum.

Original entry on oeis.org

2, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(24) = prime 113 which is 106 + (1+0+6) (or 97 + (9+7)).
		

Crossrefs

Programs

  • Haskell
    a048521 n = a048521_list !! (n-1)
    a048521_list = map a000040 $ filter ((> 0) . a107740) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
  • Mathematica
    t={};Do[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
    Union[Select[Table[n+Total[IntegerDigits[n]],{n,400}],PrimeQ]] (* Harvey P. Dale, Jul 14 2014 *)

Formula

A107740(A049084(a(n))) > 0.

Extensions

Formula and also offset corrected by Reinhard Zumkeller, Sep 27 2014

A320878 Primes such that iteration of A062028 (n + its digit sum) yields 6 primes in a row.

Original entry on oeis.org

286330897, 286330943, 388098901, 955201943, 1776186851, 1854778853, 2559495863, 2647782901, 3517793911, 3628857863, 3866728909, 3974453911, 4167637819, 4269837799, 5083007887, 5362197829, 5642510933, 6034811933, 8180784851, 8214319903
Offset: 1

Views

Author

Zak Seidov and M. F. Hasler, Nov 08 2018

Keywords

Comments

In contrast to A048523, ..., A048527, this definition uses "at least" for the number of successive primes. This allows easier computation of subsequences of terms which yield even more primes in a row.
One can nonetheless compute the terms of this sequence by considering possible pre-images under A062028 of terms of A048527. This gives the terms which yield exactly 6 primes in a row (i.e., A320878 \ A320879), and one has to take the union with further iterates of this procedure (which successively yields A320879 \ A320880, etc).

Crossrefs

Cf. A062028 (n + digit sum of n), A047791 (A062028(n) is prime), A048519 (primes among these).
a(1) = A090009(7) = start of first chain of 7 primes under iteration of A062028.
Cf. A230093 (number of m s.th. m + (sum of digits of m) = n) and references there.

Programs

  • PARI
    is_A320878(n,p=n)={for(i=1,6, isprime(p=A062028(p))||return);isprime(n)}
    forprime(p=286e6,,is_A320878(p)&& print1(p","))
    /* much faster, using the precomputed array A048527, as follows: */
    PP(n)=select(p->p+sumdigits(p)==n,primes([n-9*#digits(n),n-2])) \\ Returns list of prime predecessors for A062028. (PP(n) nonempty <=> n in A320881.)
    A320878=[]; my(S=A048527); while(#S=Set(concat(apply(PP,S))), A320878=setunion(A320878,S)) \\ Yields 211 terms from A048527[1..3000]

Formula

Numbers n in A048519 for which A062028(n) is in A048527, form the subset A320878 \ A320879.

A065073 a(n) = prime(n) + (sum of digits of prime(n)).

Original entry on oeis.org

4, 6, 10, 14, 13, 17, 25, 29, 28, 40, 35, 47, 46, 50, 58, 61, 73, 68, 80, 79, 83, 95, 94, 106, 113, 103, 107, 115, 119, 118, 137, 136, 148, 152, 163, 158, 170, 173, 181, 184, 196, 191, 202, 206, 214, 218, 215, 230, 238, 242, 241, 253, 248, 259, 271, 274, 286
Offset: 1

Views

Author

Bodo Zinser, Nov 09 2001

Keywords

Examples

			a(5) = 13 because p(5) = 11 and 11 + (1 + 1) = 13.
		

Crossrefs

Programs

  • Haskell
    a065073 = a062028 . a000040  -- Reinhard Zumkeller, Sep 27 2014
    
  • Magma
    [NthPrime(n) + &+Intseq(NthPrime(n), 10): n in [1..80]]; // Vincenzo Librandi, Nov 07 2018
  • Mathematica
    Table[ Prime[n] + Apply[ Plus, IntegerDigits[ Prime[n]]], {n, 1, 75} ]
  • PARI
    forprime(p=2,300,print1(p+sumdigits(p),",")) \\ Edited by M. F. Hasler, Nov 06 2018
    
  • PARI
    A065073(n)=sumdigits(n=prime(n))+n \\ M. F. Hasler, Nov 06 2018
    

Formula

a(n) = A062028(A000040(n)). - M. F. Hasler, Nov 06 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Nov 13 2001

A320866 Primes such that p + digitsum(p, base 4) is again a prime.

Original entry on oeis.org

5, 7, 13, 17, 19, 37, 59, 67, 97, 127, 173, 193, 223, 233, 277, 359, 379, 439, 499, 563, 569, 599, 607, 631, 653, 691, 733, 769, 811, 821, 829, 877, 919, 929, 937, 967, 1009, 1019, 1087, 1093, 1163, 1193, 1213, 1223, 1229, 1297, 1319, 1373, 1399, 1423, 1481, 1483, 1559, 1571, 1597, 1613, 1619, 1627, 1657, 1699, 1733, 1777
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

Such primes exist only for even bases b. See A243441, A320867, A320868 and A048519 for the analog in base 2, 6, 8 and 10, respectively. Also, as in base 10, there are no such primes (except 5 and 7) when + is changed to -, see comment in A243442.

Examples

			5 = 4 + 1 = 11[4] (in base 4), and 5 + 1 + 1 = 7 is again prime.
		

Crossrefs

Cf. A047791, A048519 (base 10 analog), A048520, A006378, A107740, A243441 (base 2 analog: p + Hammingweight(p) is prime), A243442 (analog for p - Hammingweight(p)), A320867 (analog for base 6), A320868 (analog for base 8).

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[#+Total[IntegerDigits[#,4]]]&] (* Harvey P. Dale, Feb 06 2020 *)
  • PARI
    forprime(p=1,1999,isprime(p+sumdigits(p,4))&&print1(p","))

A320867 Primes such that p + digitsum(p, base 6) is again a prime.

Original entry on oeis.org

11, 19, 23, 31, 41, 53, 61, 79, 109, 137, 151, 167, 179, 229, 233, 263, 271, 331, 347, 359, 419, 439, 467, 541, 557, 587, 599, 607, 653, 719, 797, 809, 839, 863, 997, 1019, 1049, 1097, 1109, 1237, 1283, 1291, 1301, 1321, 1373, 1427, 1439, 1487, 1523, 1549, 1607, 1621, 1697, 1709, 1733, 1741, 1867
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

Such primes exist only for an even base b. See A048519, A243441, A320866 and A320868 for the analog in base 10, 2, 4 and 8, respectively. Also, as in base 10, there are no such primes (except 7 and 11) when + is changed to -, see comment in A243442.

Examples

			11 = 6 + 5 = 15[6] (in base 6), and 11 + 1 + 5 = 17 is again prime.
		

Crossrefs

Cf. A047791, A048519 (base 10 analog), A048520, A006378, A107740, A243441 (base 2 analog: p + Hammingweight(p) is prime), A243442 (analog for p - Hammingweight(p)), A320866 (analog for base 4), A320868 (analog for base 8).

Programs

  • Maple
    filter:= n -> isprime(n) and isprime(n+convert(convert(n,base,6),`+`)):
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Mar 22 2020
  • PARI
    forprime(p=1,1999,isprime(p+sumdigits(p,6))&&print1(p","))

A320868 Primes such that p + digitsum(p, base 8) is again a prime.

Original entry on oeis.org

13, 29, 31, 41, 47, 61, 67, 71, 83, 97, 157, 193, 229, 241, 271, 283, 373, 397, 409, 431, 449, 467, 503, 587, 601, 607, 761, 787, 929, 971, 991, 1039, 1087, 1091, 1163, 1181, 1213, 1217, 1237, 1249, 1289, 1291, 1307, 1423, 1453, 1471, 1511, 1543, 1553, 1559, 1627, 1657, 1741, 1811, 1847, 1867, 1973, 1999
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

Such primes exist only for an even base b. See A048519, A243441, A320866 and A320867 for the analog in base 10, 2, 4 and 6, respectively. Also, as in base 10, there are no such primes (except 11 and 13) when + is changed to -, see comment in A243442.

Crossrefs

Cf. A047791, A048519 (base 10 analog), A048520, A006378, A107740, A243441 (base 2 analog: p + Hammingweight(p) is prime), A243442 (analog for p - Hammingweight(p)), A320866 (analog for base 4), A320867 (analog for base 6).

Programs

  • Maple
    digsum:= proc(n,b) convert(convert(n,base,b),`+`) end proc:
    select(p -> isprime(p) and isprime(p+digsum(p,8)), [seq(i,i=3..10000,2)]); # Robert Israel, Nov 07 2018
  • PARI
    forprime(p=1,1999,isprime(p+sumdigits(p,8))&&print1(p","))

A320881 Numbers equal to a prime plus its digit sum.

Original entry on oeis.org

4, 6, 10, 13, 14, 17, 25, 28, 29, 35, 40, 46, 47, 50, 58, 61, 68, 73, 79, 80, 83, 94, 95, 103, 106, 107, 113, 115, 118, 119, 136, 137, 148, 152, 158, 163, 170, 173, 181, 184, 191, 196, 202, 206, 214, 215, 218, 230, 238, 241, 242, 248, 253, 259, 271, 274, 281, 286, 292, 293, 296, 307, 316
Offset: 1

Views

Author

M. F. Hasler, Nov 08 2018

Keywords

Comments

Sequence A048520 lists the primes in this sequence.

Examples

			a(1) = 4 = 2 + 2 = (the smallest prime, 2 = prime(1)) + (digit sum of 2).
Similarly, a({2, 3, 5}) = 2*prime({2, 3, 4}), since the digit sum of single-digit primes is the prime itself.
a(4) = 13 = 11 + (1 + 1) = A048520(1), the first prime in this sequence.
a(6) = 17 = 13 + (1 + 3) = A048520(2), the second prime in this sequence.
		

Crossrefs

Cf. A062028 (n + its digit sum), A047791 (A062028(n) is prime), A048519 (primes in A047791).

Programs

  • PARI
    is_A320881(n)=select(p->p+sumdigits(p)==n, primes([n-9*#digits(n), n-2])) \\ Returns the list of all "solutions"; this has the boolean value of true iff the list is nonempty. - M. F. Hasler, Nov 08 2018

A320869 Primes such that p + digitsum(p, base 16) is again a prime.

Original entry on oeis.org

17, 19, 23, 29, 31, 53, 59, 89, 127, 149, 151, 157, 179, 181, 211, 223, 241, 251, 263, 269, 331, 359, 367, 397, 419, 431, 449, 457, 461, 463, 487, 541, 563, 571, 593, 599, 601, 631, 659, 661, 701, 733, 761, 769, 809, 811, 839, 907, 911, 941, 971, 997, 1049, 1087, 1109, 1171, 1201, 1237, 1283, 1289, 1291
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

Such primes exist only for an even base b. See A048519, A243441, A320866, A320867 and A320868 for the analog in base 10, 2, 4, 6 and 8, respectively. Also, as in base 10, there are no such primes when + is changed to -, see comment in A243442.

Examples

			17 = 16 + 1 = 11[16] (in base 16), and 17 + 1 + 1 = 19 is again prime.
		

Crossrefs

Cf. A047791, A048519 (base 10 analog), A048520, A006378, A107740, A243441 (base 2 analog: p + Hammingweight(p) is prime), A243442 (analog for p - Hammingweight(p)), A320866 (analog for base 4), A320867 (analog for base 6), A320868 (analog for base 8).

Programs

  • Maple
    digsum:= (n,b) -> convert(convert(n,base,b),`+`):
    select(p -> isprime(p) and isprime(p+digsum(p,16)), [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 07 2018
  • PARI
    forprime(p=1,1999,isprime(p+sumdigits(p,16))&&print1(p","))

A320870 Irregular table: row n >= 0 lists numbers m >= 0 such that n = A062028(m) := m + sum of digits of m.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 6, 11, 7, 12, 8, 13, 9, 14, 15, 20, 16, 21, 17, 22, 18, 23, 19, 24, 25, 30, 26, 31, 27, 32, 28, 33, 29, 34, 35, 40, 36, 41, 37, 42, 38, 43, 39, 44, 45, 50, 46, 51, 47, 52, 48, 53, 49, 54, 55, 60, 56, 61, 57, 62, 58, 63, 59, 64, 65, 70, 66, 71, 67, 72, 68, 73, 69, 74, 75, 80, 76, 81, 77, 82, 78, 83, 79, 84, 85, 90
Offset: 0

Views

Author

M. F. Hasler, Nov 09 2018

Keywords

Comments

Row lengths are given by A230093.

Examples

			The first nonempty rows are:
    n  | list of m
    0  | 0        // since 0 = 0 + 0
    2  | 1        // since 2 = 1 + 1
    4  | 2        // etc.
    6  | 3        // Below 10 every odd row is empty, but thereafter,
    8  | 4        // only rows 20, 31, 42, ..., 108 (steps of 11),
   10  | 5        // 110, 121, 132, ..., 198, etc. are empty.
   11  | 10       // Since 11 = 10 + (1 + 0)
   12  | 6
   13  | 11       // The first prime that yields a prime: 11 + (1 + 1) = 13.
     (...)
  100  | 86       // The first row of length 2 is 101:
  101  | 91, 100  // 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0)
  102  | 87
     (...)
		

Crossrefs

Cf. A007953 (sum of digits of n), A062028 (n + digit sum of n).
Cf. A230093 (number of m such that m + (sum of digits of m) is n).
Cf. A006064 (least m with row length n),
Cf. A003052 (Self or Colombian numbers: rows of length 0), A006378 (Colombian primes).
Cf. A320881 (indices of rows containing a prime), A048520 (primes among these).

Programs

  • Maple
    N:= 100: # for rows 0 to N, flattened
    for i from 0 to N do V[i]:= NULL od:
    for i from 0 to N-1 do
      v:= convert(convert(i,base,10),`+`);
      if v <= N then V[v]:= V[v],i fi
    od:
    seq(V[i],i=1..N); # Robert Israel, Jul 21 2025
  • PARI
    A320870_row(n)=if(n,select(m->m+sumdigits(m)==n,[max(n-9*logint(n,10)+8,n\/2)..n-1]),[0])
Showing 1-10 of 13 results. Next