cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048655 Generalized Pellian with second term equal to 5.

Original entry on oeis.org

1, 5, 11, 27, 65, 157, 379, 915, 2209, 5333, 12875, 31083, 75041, 181165, 437371, 1055907, 2549185, 6154277, 14857739, 35869755, 86597249, 209064253, 504725755, 1218515763, 2941757281, 7102030325, 17145817931, 41393666187, 99933150305, 241259966797, 582453083899
Offset: 0

Views

Author

Keywords

Comments

Equals binomial transform of A143095: (1, 4, 2, 8, 4, 16, 8, 32, ...). - Gary W. Adamson, Jul 23 2008

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
  • Maple
    with(combinat): a:=n->3*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{4},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{2,1},{1,5},30] (* Harvey P. Dale, Nov 05 2011 *)
  • Maxima
    a[0]:1$
    a[1]:5$
    a[n]:=2*a[n-1]+a[n-2]$
    A048655(n):=a[n]$
    makelist(A048655(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    a(n)=([0,1; 1,2]^n*[1;5])[1,1] \\ Charles R Greathouse IV, Feb 09 2017
    

Formula

a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=5.
a(n) = ((4+sqrt(2))(1+sqrt(2))^n - (4-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
a(n) = P(n) - 3*P(n+1) + 2*P(n+2). - Creighton Dement, Jan 18 2005
G.f.: (1+3*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
E.g.f.: exp(x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Vaclav Kotesovec, Feb 16 2015
a(n) = 3*Pell(n) + Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016