A048745 Partial sums of A048654.
1, 5, 14, 36, 89, 217, 526, 1272, 3073, 7421, 17918, 43260, 104441, 252145, 608734, 1469616, 3547969, 8565557, 20679086, 49923732, 120526553, 290976841, 702480238, 1695937320, 4094354881, 9884647085, 23863649054, 57611945196, 139087539449, 335787024097
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Programs
-
Magma
I:=[1,5,14]; [n le 3 select I[n] else 3*Self(n-1) -Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, May 23 2021
-
Mathematica
t={1,5}; Do[AppendTo[t, t[[-2]] + 2*t[[-1]] + 3], {n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *) Accumulate[LinearRecurrence[{2,1},{1,4},30]] (* or *) LinearRecurrence[{3,-1,-1},{1,5,14},30] (* Harvey P. Dale, Aug 03 2020 *)
-
PARI
a(n)=polcoeff((1+2*x)/(1-3*x+x^2+x^3)+x*O(x^n),n) \\ Paul D. Hanna
-
Sage
[(5*lucas_number1(n+1,2,-1) + 3*lucas_number1(n,2,-1) -3)/2 for n in (0..30)] # G. C. Greubel, May 23 2021
Formula
a(n) = 2*a(n-1) + a(n-2) + 3, a(0)=1, a(1)=5.
a(n) = ( ((4+(5/2)*sqrt(2))*(1+sqrt(2))^n - (4-(5/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2) ) - 3/2.
G.f.: (1+2*x)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n>2, a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Dec 16 2008
2*a(n) = A135532(n+2) - 3. - R. J. Mathar, Mar 06 2013
a(n) = (1/2)*( 5*P(n+1) + 3*P(n) - 3), where P(n) = A000129(n). - G. C. Greubel, May 23 2021