cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048745 Partial sums of A048654.

Original entry on oeis.org

1, 5, 14, 36, 89, 217, 526, 1272, 3073, 7421, 17918, 43260, 104441, 252145, 608734, 1469616, 3547969, 8565557, 20679086, 49923732, 120526553, 290976841, 702480238, 1695937320, 4094354881, 9884647085, 23863649054, 57611945196, 139087539449, 335787024097
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,5,14]; [n le 3 select I[n] else 3*Self(n-1) -Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, May 23 2021
    
  • Mathematica
    t={1,5}; Do[AppendTo[t, t[[-2]] + 2*t[[-1]] + 3], {n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
    Accumulate[LinearRecurrence[{2,1},{1,4},30]] (* or *) LinearRecurrence[{3,-1,-1},{1,5,14},30] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    a(n)=polcoeff((1+2*x)/(1-3*x+x^2+x^3)+x*O(x^n),n) \\ Paul D. Hanna
    
  • Sage
    [(5*lucas_number1(n+1,2,-1) + 3*lucas_number1(n,2,-1) -3)/2 for n in (0..30)] # G. C. Greubel, May 23 2021

Formula

a(n) = 2*a(n-1) + a(n-2) + 3, a(0)=1, a(1)=5.
a(n) = ( ((4+(5/2)*sqrt(2))*(1+sqrt(2))^n - (4-(5/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2) ) - 3/2.
G.f.: (1+2*x)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n>2, a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Dec 16 2008
2*a(n) = A135532(n+2) - 3. - R. J. Mathar, Mar 06 2013
a(n) = (1/2)*( 5*P(n+1) + 3*P(n) - 3), where P(n) = A000129(n). - G. C. Greubel, May 23 2021