cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048778 First partial sums of A048745; second partial sums of A048654.

Original entry on oeis.org

1, 6, 20, 56, 145, 362, 888, 2160, 5233, 12654, 30572, 73832, 178273, 430418, 1039152, 2508768, 6056737, 14622294, 35301380, 85225112, 205751665, 496728506, 1199208744, 2895146064, 6989500945, 16874148030, 40737797084, 98349742280, 237437281729, 573224305826, 1383885893472
Offset: 0

Views

Author

Keywords

Comments

Define a triangle T by T(n,0) = n*(n+1) + 1, T(n,n) = (n+1)*(n+2)/2, and T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). Then a(n) is the sum of row n. - J. M. Bergot, Mar 06 2013

Crossrefs

Programs

  • Magma
    I:=[1, 6, 20, 56]; [n le 4 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-4): n in [1..41]]; // G. C. Greubel, Aug 09 2022
    
  • Mathematica
    Table[(Fibonacci[n+3,2] +2*Fibonacci[n+2,2] -(3*n+7))/2, {n, 0, 40}] (* G. C. Greubel, Aug 09 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    gf= ( -1-2*x ) / ( (x^2+2*x-1)*(x-1)^2 );  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • SageMath
    [(lucas_number1(n+3, 2, -1) + 2*lucas_number1(n+2, 2, -1) -3*n-7)/2 for n in (0..40)] # G. C. Greubel, Aug 09 2022

Formula

a(n) = 2*a(n-1) + a(n-2) + 3*n + 1, with a(0)=1, a(1)=6.
a(n) = ( ((13 + 9*sqrt(2))/2)*(1 + sqrt(2))^n - ((13 - 9*sqrt(2))/2)*(1 -sqrt(2))^n )/2*sqrt(2) - (3*n + 7)/2.
From R. J. Mathar, Nov 08 2012: (Start)
G.f.: (1 + 2*x) / ( (1-x-x^2)*(1-x)^2 ).
a(n) = A048776(n) + 2*A048776(n-1). (End)
a(n) = (Pell(n+3) + 2*Pell(n+2) - 3*n - 7)/2, where Pell(n) = A000129(n). - G. C. Greubel, Aug 09 2022

Extensions

Corrected by T. D. Noe, Nov 08 2006

A005409 Number of polynomials of height n: a(1)=1, a(2)=1, a(3)=4, a(n) = 2*a(n-1) + a(n-2) + 2 for n >= 4.

Original entry on oeis.org

1, 1, 4, 11, 28, 69, 168, 407, 984, 2377, 5740, 13859, 33460, 80781, 195024, 470831, 1136688, 2744209, 6625108, 15994427, 38613964, 93222357, 225058680, 543339719, 1311738120, 3166815961, 7645370044, 18457556051, 44560482148, 107578520349, 259717522848
Offset: 1

Views

Author

N. J. A. Sloane, S. M. Diano

Keywords

Comments

Starting with n=1, the sum of the antidiagonals of the array in a comment from Cloitre regarding A002002. - Gerald McGarvey, Aug 12 2004
Cumulative sum of A001333. - Sture Sjöstedt, Nov 15 2011
a(n) is the number of self-avoiding walks on a 3 rows X n columns grid of squares, starting top-left, ending bottom-left, using moves of R(ight), L(eft), U(p), D(own). E.g., for 3 X 1 there is just the path (D,D), and a(1) = 1. For 3 X 2, there are 4 paths (D,D) (D,R,D,L) (R,D,D,L) and (R,D,L,D) and a(2) = 4. - Toby Gottfried, Mar 04 2013
Define a triangle to have T(n,1) = n*(n-1)+1 and T(n,n) = n; the other terms T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). The sum of the terms in row(n+1) minus those in row(n) = a(n+2). - J. M. Bergot, Apr 30 2013
Since the terms of the sequence are all finite, it can be used in enumerating all polynomials with integer coefficients. Since each polynomial has only a finite number of roots, this enumeration can be used in turn to enumerate the algebraic numbers. Cantor uses this to derive the existence of transcendental numbers as a corollary of his stronger result that no enumerable sequence of real numbers can include all of them. - Morgan L. Owens, May 15 2022
For n > 1, also the rank of the (n-1)-Pell graph. - Eric W. Weisstein, Aug 01 2023

References

  • R. Courant and H. Robbins, What is Mathematics?, Oxford Univ. Press, 1941, p. 103.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A214931 (walks on grids with 4 rows), A006189 (grids with 3 columns).
Cf. A216211 (grids with 4 columns).

Programs

  • Haskell
    a005409 n = a005409_list !! (n-1)
    a005409_list = 1 : scanl1 (+) (tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [1] cat [n le 2 select n^2 else 2*Self(n-1) +Self(n-2) +2: n in [1..30]]; // G. C. Greubel, Apr 22 2021
    
  • Mathematica
    Join[{1}, RecurrenceTable[{a[1] == 1, a[2] == 4, a[n] == 2 a[n - 1] + a[n - 2] + 2}, a[n], {n, 30}]] (* Harvey P. Dale, Jul 27 2011 *)
    Join[{1}, CoefficientList[Series[(x + 1)/((x - 1) (x^2 + 2 x - 1)), {x, 0, 40}], x]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    Join[{1}, Fibonacci[Range[2, 35], 2] -1] (* G. C. Greubel, Apr 22 2021 *)
    Join[{1}, LinearRecurrence[{3, -1, -1}, {1, 4, 11}, 20]] (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    a(n)=polcoeff(1+x*(1+x)/(1-3*x+x^2+x^3)+x*O(x^n),n) \\ Paul D. Hanna
    
  • Sage
    [1]+[lucas_number1(n,2,-1) -1 for n in (2..35)] # G. C. Greubel, Apr 22 2021

Formula

a(n) = A000129(n) - 1, n > 1.
a(n) = ((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2))-1 for n > 1, a(1)=1.
G.f.: 1 + x*(1+x)/( (1-x)*(1-2*x-x^2) ). - Simon Plouffe in his 1992 dissertation.
a(n) = 3*a(n-1) - a(n-2) - a(n-3). - Toby Gottfried, Mar 08 2013
(1, 4, 11, 28, ...) = (1, 2, 2, 2, ...) * the Pell sequence starting (1, 2, 5, 12, 29, ...); such that, for example: a(5) = (2, 2, 2, 1) dot (1, 2, 5, 12) = (2 + 4 + 10 + 12) = 48. - Gary W. Adamson May 21 2013
E.g.f.: 1 + exp(x)*(2*(cosh(sqrt(2)*x) - 1) + sqrt(2)*sinh(sqrt(2)*x))/2. - Stefano Spezia, Jun 26 2022

Extensions

Additional comments from Barry E. Williams
Showing 1-2 of 2 results.