A048778 First partial sums of A048745; second partial sums of A048654.
1, 6, 20, 56, 145, 362, 888, 2160, 5233, 12654, 30572, 73832, 178273, 430418, 1039152, 2508768, 6056737, 14622294, 35301380, 85225112, 205751665, 496728506, 1199208744, 2895146064, 6989500945, 16874148030, 40737797084, 98349742280, 237437281729, 573224305826, 1383885893472
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,0,1).
Programs
-
Magma
I:=[1, 6, 20, 56]; [n le 4 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-4): n in [1..41]]; // G. C. Greubel, Aug 09 2022
-
Mathematica
Table[(Fibonacci[n+3,2] +2*Fibonacci[n+2,2] -(3*n+7))/2, {n, 0, 40}] (* G. C. Greubel, Aug 09 2022 *)
-
PARI
N=66; x='x+O('x^N); gf= ( -1-2*x ) / ( (x^2+2*x-1)*(x-1)^2 ); Vec(Ser(gf)) /* Joerg Arndt, Mar 07 2013 */
-
SageMath
[(lucas_number1(n+3, 2, -1) + 2*lucas_number1(n+2, 2, -1) -3*n-7)/2 for n in (0..40)] # G. C. Greubel, Aug 09 2022
Formula
a(n) = 2*a(n-1) + a(n-2) + 3*n + 1, with a(0)=1, a(1)=6.
a(n) = ( ((13 + 9*sqrt(2))/2)*(1 + sqrt(2))^n - ((13 - 9*sqrt(2))/2)*(1 -sqrt(2))^n )/2*sqrt(2) - (3*n + 7)/2.
From R. J. Mathar, Nov 08 2012: (Start)
G.f.: (1 + 2*x) / ( (1-x-x^2)*(1-x)^2 ).
a(n) = (Pell(n+3) + 2*Pell(n+2) - 3*n - 7)/2, where Pell(n) = A000129(n). - G. C. Greubel, Aug 09 2022
Extensions
Corrected by T. D. Noe, Nov 08 2006
Comments