cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048766 Integer part of cube root of n. Or, number of cubes <= n. Or, n appears 3n^2 + 3n + 1 times.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

Programs

  • Haskell
    a048766 = round . (** (1/3)) . fromIntegral
    a048766_list = concatMap (\x -> take (a003215 x) $ repeat x) [0..]
    -- Reinhard Zumkeller, Sep 15 2013, Oct 22 2011
    
  • Magma
    [n eq 0 select 0 else Iroot(n,3): n in [0..110]]; // Bruno Berselli, Feb 20 2015
    
  • Maple
    A048766 := proc(n)
        floor(root[3](n)) ;
    end proc:
    seq(A048766(n),n=0..80) ; # R. J. Mathar, Dec 20 2020
  • Mathematica
    a[n_]:=IntegerPart[n^(1/3)];lst={};Do[AppendTo[lst, a[n]], {n, 0, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *)
  • PARI
    a(n)=floor(n^(1/3)) \\ Charles R Greathouse IV, Mar 20 2012
    
  • PARI
    a(n) = sqrtnint(n, 3); \\ Michel Marcus, Nov 10 2015
    
  • Python
    from sympy import integer_nthroot
    def a(n): return integer_nthroot(n, 3)[0]
    print([a(n) for n in range(105)]) # Michael S. Branicky, Oct 19 2021

Formula

G.f.: Sum_{k>=1} x^(k^3)/(1-x). - Geoffrey Critzer, Feb 05 2014
a(n) = Sum_{i=1..n} A210826(i)*floor(n/i). - Ridouane Oudra, Jan 21 2021

Extensions

Additional comments from Reinhard Zumkeller, Oct 07 2001
More terms from Benoit Cloitre, Jan 30 2003