cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048878 Generalized Pellian with second term of 9.

Original entry on oeis.org

1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249, 128279240318717, 543399582092117, 2301877568687185
Offset: 0

Views

Author

Keywords

Examples

			a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9.
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=n->5*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4,1},{1,9},31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2),{x,0,30}],x] (* Harvey P. Dale, Jul 12 2011 *)
  • PARI
    { default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009

Formula

a(n) = ( (7+sqrt(5))(2+sqrt(5))^n - (7-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5).
G.f.: (1+5*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = F(3*n+3) + F(3*n-2); F = A000045. - Yomna Bakr and Greg Dresden, May 25 2024