cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134451 Ternary digital root of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 27 2007

Keywords

Comments

Continued fraction expansion of sqrt(3) - 1. - N. J. A. Sloane, Dec 17 2007. Cf. A040001, A048878/A002530.
Minimum number of terms required to express n as a sum of odd numbers.
Shadow transform of even numbers A005843. - Michel Marcus, Jun 06 2013
From Jianing Song, Nov 01 2022: (Start)
For n > 0, a(n) is the minimal gap of distinct numbers coprime to n. Proof: denote the minimal gap by b(n). For odd n we have A058026(n) > 0, hence b(n) = 1. For even n, since 1 and -1 are both coprime to n we have b(n) <= 2, and that b(n) >= 2 is obvious.
The maximal gap is given by A048669. (End)

Examples

			n=42: A007089(42) = '1120', A053735(42) = 1+1+2+0 = 4,
A007089(4)='11', A053735(4)=1+1=2: therefore a(42) = 2.
0.732050807568877293527446341... = 0 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 31 2009
		

Crossrefs

Cf. A000010, A055034, A134452, A160390 (decimal expansion).
Apart from a(0) the same as A040001.
Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1).

Programs

Formula

a(n) = n if n <= 2, otherwise a(A053735(n)).
a(A005408(n)) = 1; a(A005843(n)) = 2 for n>0;
a(n) = 0 if n=0, otherwise A000034(n-1).
a(n) = ((n+1) mod 2) + 2*sign(n) - 1. - Wesley Ivan Hurt, Dec 06 2013
Multiplicative with a(2^e) = 2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Aug 06 2018
a(0) = A055034(1) / A000010(1), a(n) = A000010(n+1) / A055034(n+1), n>1. - Torlach Rush, Oct 29 2019
Dirichlet g.f.: zeta(s)*(1+1/2^s). - Amiram Eldar, Jan 01 2023

A110527 a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 0, a(1) = 1, a(2) = 8.

Original entry on oeis.org

0, 1, 8, 29, 128, 537, 2280, 9653, 40896, 173233, 733832, 3108557, 13168064, 55780809, 236291304, 1000946021, 4240075392, 17961247585, 76085065736, 322301510525, 1365291107840, 5783465941881, 24499154875368
Offset: 0

Views

Author

Creighton Dement, Jul 24 2005

Keywords

Comments

A048878(n) = a(n) + a(n+1). Compare with A110526.

Crossrefs

Programs

  • Maple
    seriestolist(series(-x*(1+5*x)/((1+x)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')], apart from initial term.
  • Mathematica
    LinearRecurrence[{3,5,1},{0,1,8},30] (* Harvey P. Dale, Feb 12 2015 *)
  • PARI
    x='x+O('x^50); concat(0, Vec(-x*(1+5*x)/((1+x)*(x^2+4*x-1)))) \\ G. C. Greubel, Aug 30 2017

Formula

G.f.: -x*(1+5*x)/((1+x)*(x^2+4*x-1)).
a(n) = (-1)^n + 3*A001076(n) - A015448(n). - Ehren Metcalfe, Nov 18 2017
a(n) = (-1)^n + 2*A110526(n) + A110679(n-2) for n >= 2. - Yomna Bakr and Greg Dresden, May 25 2024

A153884 a(n) = ((7 + sqrt(5))^n - (7 - sqrt(5))^n)/(2*sqrt(5)).

Original entry on oeis.org

1, 14, 152, 1512, 14480, 136192, 1269568, 11781504, 109080064, 1008734720, 9322763264, 86134358016, 795679428608, 7349600247808, 67884508610560, 627000709644288, 5791091556155392, 53487250561826816, 494013479394738176
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 03 2009

Keywords

Comments

Fifth binomial transform of A048878.
lim_{n -> infinity} a(n)/a(n-1) = 7 + sqrt(5) = 9.236067977499789696....

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A048878.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((7+r)^n-(7-r)^n)/(2*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 04 2009
    
  • Magma
    I:=[1,14]; [n le 2 select I[n] else 14*Self(n-1)-44*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 01 2016
    
  • Mathematica
    Join[{a=1,b=14},Table[c=14*b-44*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    LinearRecurrence[{14, -44}, {1, 14}, 25] (* or *) Table[((7 + sqrt(5))^n - (7 - sqrt(5))^n)/(2*sqrt(5)) , {n,0,25}] (* G. C. Greubel, Aug 31 2016 *)
  • PARI
    Vec(x/(1-14*x+44*x^2) + O(x^99)) \\ Altug Alkan, Sep 01 2016

Formula

From Philippe Deléham, Jan 03 2009: (Start)
a(n) = 14*a(n-1) - 44*a(n-2) for n>1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 14*x + 44*x^2). (End)
E.g.f.: sinh(sqrt(5)*x)*exp(7*x)/sqrt(5). - Ilya Gutkovskiy, Sep 01 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 04 2009
Edited by Klaus Brockhaus, Oct 11 2009
Showing 1-3 of 3 results.