cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A157392 A partition product of Stirling_1 type [parameter k = 2] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 1, 24, 8, 0, 1, 80, 60, 0, 0, 1, 330, 320, 0, 0, 0, 1, 1302, 2030, 0, 0, 0, 0, 1, 5936, 12432, 0, 0, 0, 0, 0, 1, 26784, 81368, 0, 0, 0, 0, 0, 0, 1, 133650, 545120, 0, 0, 0, 0, 0, 0, 0, 1, 669350, 3825690
Offset: 1

Views

Author

Peter Luschny, Mar 07 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = 2,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144358.
Same partition product with length statistic is A049404.
Diagonal a(A000217(n)) = falling_factorial(2,n-1), row in A008279
Row sum is A049425.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = = product_{j=0..n-2}(j-n+4).

A293991 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j=1..k+1} binomial(k,j-1)*x^j/j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 9, 10, 1, 1, 1, 5, 16, 33, 26, 1, 1, 1, 6, 25, 76, 141, 76, 1, 1, 1, 7, 36, 145, 436, 651, 232, 1, 1, 1, 8, 49, 246, 1025, 2776, 3333, 764, 1, 1, 1, 9, 64, 385, 2046, 8245, 19384, 18369, 2620, 1, 1, 1, 10, 81
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array A(n,k) begins:
   1,  1,   1,   1,    1, ...
   1,  1,   1,   1,    1, ...
   1,  2,   3,   4,    5, ...
   1,  4,   9,  16,   25, ...
   1, 10,  33,  76,  145, ...
   1, 26, 141, 436, 1025, ...
		

Crossrefs

Columns k=0..5 give A000012, A000085, A049425, A049426, A049427, A049428.
Rows n=0-1 give A000012.
Main diagonal gives A294003.
Cf. A291709.

Programs

  • Mathematica
    A[0, ] = 1; A[n, k_] := (n-1)!*Sum[Binomial[k, j-1]*A[n-j, k]/(n-j)!, {j, 1, Min[k+1, n]}];
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)

Formula

E.g.f. of column k: exp(((1+x)^(k+1) - 1)/(k+1)).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k+1,n)} binomial(k,j-1)*A(n-j,k)/(n-j)! for n > 0.

A049404 Triangle read by rows, the Bell transform of n!*binomial(2,n) (without column 0).

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A049324.
a(n,1) = A008279(2,n-1). a(n,m) =: S1(-2; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers).
a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A004747(n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3.
Triangle starts:
{1}
{2,  1}
{2,  6,  1}
{0, 20, 12, 1}
		

Crossrefs

Row sums give A049425.

Programs

  • Mathematica
    rows = 11;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[2, k], {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, m) = n!*A049324(n, m)/(m!*3^(n-m));
a(n, m) = (3*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: ((x+x^2+(x^3)/3)^m)/m!.
a(n,m) = n!/(3^m * m!)*(Sum_{i=0..floor(m-n/3)} (-1)^i * binomial(m,i) * binomial(3*m-3*i,n)), 0 for empty sums. - Werner Schulte, Feb 20 2020

Extensions

New name from Peter Luschny, Jan 16 2016

A049377 Row sums of triangle A049352.

Original entry on oeis.org

1, 1, 5, 33, 273, 2721, 31701, 421905, 6302913, 104270913, 1889862021, 37204038081, 789866524305, 17977594555233, 436435929785493, 11251798888929201, 306889765901872641, 8825681949708120705, 266828094135981378693, 8458295877281844310113
Offset: 0

Keywords

Crossrefs

Column k=4 of A291709.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+2)!/6*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*(j+2)!/6*a[n-j], {j, 1, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

E.g.f. exp(p(x)) with p(x) := x*(3-3*x+x^2)/(3*(1-x)^3) (E.g.f. first column of A049352).
a(n) ~ n^(n-1/8)/2 * exp(-1/4 + 5*n^(1/4)/24 + sqrt(n)/2 + 4*n^(3/4)/3 - n). - Vaclav Kotesovec, Oct 23 2017
E.g.f.: Sum_{n>=0} ( Integral 1/(1-x)^4 dx )^n / n!, where the constant of integration is taken to be zero. - Paul D. Hanna, Apr 27 2019
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A004212(k).
a(n) = (1/exp(1/3)) * (-1)^n * n! * Sum_{k>=0} binomial(-3*k,n)/(3^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A144358 Partition number array, called M31(-2), related to A049404(n,m) = S1(-2;n,m) (generalized Stirling triangle).

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 0, 8, 12, 12, 1, 0, 0, 40, 20, 60, 20, 1, 0, 0, 0, 40, 0, 240, 120, 40, 180, 30, 1, 0, 0, 0, 0, 0, 0, 280, 840, 0, 840, 840, 70, 420, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2240, 0, 0, 1120, 6720, 1680, 0, 2240, 3360, 112, 840, 56, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2240, 0, 0
Offset: 1

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(-2;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
First member (K=2) in the family M31(-K) of partition number arrays.
If M31(-2;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1(-2) := A049404.

Examples

			[1]; [2,1]; [2,6,1]; [0,8,12,12,1]; [0,0,40,20,60,20,1]; ...
a(4,3) = 12 = 3*S1(-2;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A049425 (row sums).
Cf. A144357 (M31(-1) array), A144877 (M31(-3) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(S1(-2;j,1)^e(n,k,j),j=1..n) = M3(n,k)*product(S1(-2;j,1)^e(n,k,j),j=1..n) with S1(-2;n,1)|= A008279(2,n-1)= [1,2,2,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A249015 A binomial convolution.

Original entry on oeis.org

1, 1, 5, 17, 69, 339, 1677, 9321, 55137, 343659, 2285289, 15910857, 116120781, 886308147, 7033465989, 58008074409, 495792941337, 4381170220251, 39980186877537, 376025841184329, 3640077999981189, 36224841818288547, 370112212444620861, 3878334404076375657
Offset: 0

Author

Emanuele Munarini, Oct 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[(n!/k!)Sum[Binomial[k,i]Binomial[k-i+2,n-2i-k]/3^i,{i,0,k}],{k,0,n}]
    c[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k,i]Binomial[k-i,n-2i-k]/3^i,{i,0,k}],{k,0,n}]
    Table[If[n==0,1,0]+Sum[Binomial[n,k]b[k]c[n-k-1],{k,0,n-1}],{n,0,40}]
  • Maxima
    b(n) := sum((n!/k!)*sum(binomial(k,i)*binomial(k-i+2,n-2*i-k)/3^i,i,0,k),k,0,n);
    c(n) := sum((n!/k!)*(-1)^k*sum(binomial(k,i)*binomial(k-i,n-2*i-k)/3^i,i,0,k),k,0,n);
    makelist((if n=0 then 1 else 0)+sum(binomial(n,k)*b(k)*c(n-k-1),k,0,n-1),n,0,20);

Formula

a(n) = 0^0 + Sum_{k=0..n-1} binomial(n,k)*b(k)*c(n-k-1),
where the numbers b(n) = A049425(n+1) have e.g.f. (1+t)^2*exp(t+t^2+t^3/3)
and the numbers c(n) have e.g.f. exp(-(t+t^2+t^3/3)).
D-finite with recurrence: a(n+4) + n*a(n+3) - 3*(n+3)*a(n+2) - 3*(n+3)*(n+2)*a(n+1) - (n+3)*(n+2)*(n+1)*a(n) = 0.
E.g.f.: A(t) = 1+(1+t)^2*exp(t+t^2+t^3/3)*Integral_{u=0..t} exp(-(u+u^2+u^3/3)) du.
Differential equation for the e.g.f.: (1+t)*A''(t) - (2+3*t+3*t^2+t^3)*A'(t) - 3*(1+t)^2*A(t) = 0.

A369785 Expansion of e.g.f. exp( (exp(3*(exp(x)-1))-1)/3 ).

Original entry on oeis.org

1, 1, 5, 32, 252, 2368, 25865, 321310, 4461684, 68329293, 1142114917, 20663072796, 401891071075, 8355591197398, 184796601094141, 4329517995684305, 107060130166069859, 2785248872828731497, 76017344650249268158, 2171058618712177987046
Offset: 0

Author

Seiichi Manyama, Feb 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((exp(3*(exp(x)-1))-1)/3)))

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A004212(k).

A249014 A double binomial sum.

Original entry on oeis.org

1, 3, 15, 105, 933, 9951, 123123, 1727685, 27050985, 466795323, 8791179831, 179262508833, 3931730998605, 92237649141015, 2303515063987803, 60987344488950141, 1705641174191204433, 50228924171214633075, 1553143164997199612895
Offset: 0

Author

Emanuele Munarini, Oct 20 2014

Keywords

Crossrefs

Cf. A049425.

Programs

  • Mathematica
    Table[Sum[n!/k!Sum[Binomial[k,i]Binomial[n+k-i+1,2k+i+1]/3^i,{i,0,k}],{k,0,n}],{n,0,60}]
  • Maxima
    makelist(sum(n!/k!*sum(binomial(k,i)*binomial(n+k-i+1,2*k+i+1)/3^i,i,0,k),k,0,n),n,0,12);

Formula

E.g.f.: (1/(1-t)^2)*exp((3*t-3*t^2+t^3)/(3*(1-t)^3)).
a(n) = sum(n!/k!*sum(bin(k,i)*bin(n+k-i+1,2*k+i+1)/3^i,i=0..k),k=0..n).
a(n) = sum(Lah(n,k)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = (1+t)^2*exp(t+t^2+t^3/3) (essentially sequence A049425).
a(n) = sum(Lah(n+1,k+1)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = exp(t+t^2+t^3/3) (sequence A049425).
a(n) = sum(bin(n,k)*(n!/k!)*h(k),k=0..n), where the numbers h(n) are defined by the e.g.f. h(x) = (1+t)*exp(t+t^2+t^3/3).
Recurrence: a(n+4)-(4*n+15)*a(n+3)+6*(n+3)^2*a(n+2)-2*(n+3)*(n+2)*(2n+5)*a(n+1)+(n+3)*(n+2)^2*(n+1)*a(n)=0.

A249062 A double binomial sum.

Original entry on oeis.org

1, 2, 5, 18, 69, 306, 1497, 7890, 45033, 273474, 1760301, 11961522, 85265325, 636026418, 4947725889, 40019230386, 335868650577, 2918173355010, 26199114476373, 242657102748114, 2314964975130261, 22717352863875762, 229029972003647145, 2369438933865972498
Offset: 0

Author

Emanuele Munarini, Oct 20 2014

Keywords

Crossrefs

Cf. A049425.

Programs

  • Mathematica
    AList[n_] := CoefficientList[Series[(1 + t) E^(t + t^2 + t^3/3), {t, 0, n}], t] Table[k!, {k, 0, n}]
    AList[100]
  • Maxima
    a(n) := sum((n!/k!)*sum(binomial(k,i)*binomial(k-i+1,n-k-2*i)/3^i,i,0,k),k,0,n);
    makelist(a(n),n,0,24);

Formula

a(n) = sum((n!/k!)*sum(bin(k,i)*bin(k-i+1,n-k-2*i)/3^i,i=0..k),k=0..n).
E.g.f.: (1+t)*exp(t+t^2+t^3/3).
a(n+4)+(n+1)*a(n+3)-3*(n+3)*a(n+2)-3*(n+3)*(n+2)*a(n+1)-(n+3)*(n+2)*(n+1)*a(n)=0.

A380260 Expansion of e.g.f. exp( ((1+2*x)^(3/2) - 1)/3 ).

Original entry on oeis.org

1, 1, 2, 3, 9, 6, 111, -573, 7638, -95751, 1450431, -24643134, 468589617, -9843336567, 226448287794, -5662061186949, 152892006728841, -4434211761771978, 137468475061977663, -4536657554920874181, 158788359466681092966, -5875324355407515077439, 229142457698060305226367
Offset: 0

Author

Seiichi Manyama, Jan 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[((1+2x)^(3/2)-1)/3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 29 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(((1+2*x)^(3/2)-1)/3)))

Formula

a(n) = Sum_{k=0..n} 2^(n-k) * Stirling1(n,k) * A004212(k) = Sum_{k=0..n} 3^k * 2^(n-k) * Stirling1(n,k) * Bell_k(1/3), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/3)) * 2^n * n! * Sum_{k>=0} binomial(3*k/2,n)/(3^k * k!).
Showing 1-10 of 10 results.