A049453 Second pentagonal numbers with even index: a(n) = n*(6*n+1).
0, 7, 26, 57, 100, 155, 222, 301, 392, 495, 610, 737, 876, 1027, 1190, 1365, 1552, 1751, 1962, 2185, 2420, 2667, 2926, 3197, 3480, 3775, 4082, 4401, 4732, 5075, 5430, 5797, 6176, 6567, 6970, 7385, 7812, 8251, 8702, 9165, 9640, 10127, 10626, 11137, 11660, 12195
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
seq(binomial(6*n+1,2)/3, n=0..42); # Zerinvary Lajos, Jan 21 2007
-
Mathematica
s=0;lst={s};Do[s+=n++ +7;AppendTo[lst, s], {n, 0, 7!, 12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *) Table[n*(6*n + 1), {n,0,50}] (* G. C. Greubel, Jun 07 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(x*(7+5*x)/(1-x)^3)) \\ G. C. Greubel, Jun 07 2017
Formula
G.f.: x*(7+5*x)/(1-x)^3.
a(n) = 12*n + a(n-1) - 5 with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - sqrt(3)*Pi/2 - 2*log(2) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi + log(2) + sqrt(3)*log(2 + sqrt(3)) - 6. (End)
E.g.f.: exp(x)*x*(7 + 6*x). - Elmo R. Oliveira, Dec 12 2024
Comments