A049591 Odd primes p such that p+2 is composite.
7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 139, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 229, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 313, 317, 331, 337, 349, 353, 359, 367, 373, 379, 383, 389
Offset: 1
Keywords
Examples
13 is here because it is prime and 15 is composite. Also 15 divides 12!.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yildirim, Bull. Amer. Math. Soc., 44 (2007), 1-18.
- Index entries for primes, gaps between
Programs
-
Magma
[k:k in PrimesInInterval(3,400)| not IsPrime(k+2)]; // Marius A. Burtea, Aug 03 2019
-
Maple
d:=4; M:=1000; t0:=[]; for n from 1 to M do p:=ithprime(n); if nextprime(p) - p >= d then t0:=[op(t0),p]; fi; od: t0;
-
Mathematica
Select[Prime[Range[100]], NextPrime[#] -#>=4 &] (* G. C. Greubel, Aug 22 2019 *)
-
PARI
isok(p) = isprime(p) && (p % 2) && !isprime(p+2); \\ Michel Marcus, Feb 25 2014
-
Sage
[nth_prime(n) for n in (1..100) if (nth_prime(n+1) - nth_prime(n)) >= 4] # G. C. Greubel, Aug 22 2019
Extensions
More terms from Benoit Cloitre, Jun 04 2003
Edited by Don Reble, Dec 20 2006
Comments