cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049600 Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < ... < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= ... <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 4, 8, 8, 0, 1, 5, 13, 20, 16, 0, 1, 6, 19, 38, 48, 32, 0, 1, 7, 26, 63, 104, 112, 64, 0, 1, 8, 34, 96, 192, 272, 256, 128, 0, 1, 9, 43, 138, 321, 552, 688, 576, 256, 0, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512
Offset: 0

Views

Author

Keywords

Comments

Essentially array A059576 divided by sequence A011782.
[Hetyei] calls a variant of this array (omitting the initial row of zeros) the asymmetric Delannoy numbers and shows how they arise in certain lattice path enumeration problems and a face enumeration problem associated to Jacobi polynomials. - Peter Bala, Oct 29 2008
Essentially triangle in A208341. - Philippe Deléham, Mar 23 2012
T(n+k,n) is the dot product of a vector from the n-th row of Pascal's triangle A007318 with a vector created by the first n+1 values evaluated from the cycle index of symmetry group S(k). Example: T(4+3,4) = T(7,4) = {1,4,6,4,1}.{1,4,10,20,35} = 192. - Richard Turk, Sep 21 2017
The formula T(n,k) = Sum_{r=0..n-1} C(k+r,r)*C(n-1,r) (Paul D. Hanna, Oct 06 2006) counts the paths of the title by number, r, of interior vertices in the path. - David Callan, Nov 25 2021

Examples

			Diagonals (each starting on row 1): {0}; {0,1}; {0,1,2}; ...
Array begins:
    0     0     0     0     0     0     0     0     0     0     0 ...
    1     1     1     1     1     1     1     1     1     1     1 ...
    2     3     4     5     6     7     8     9    10    11    12 ...
    4     8    13    19    26    34    43    53    64    76    89 ...
    8    20    38    63    96   138   190   253   328   416   518 ...
   16    48   104   192   321   501   743  1059  1462  1966  2586 ...
   32   112   272   552  1002  1683  2668  4043  5908  8378 11584 ...
   64   256   688  1520  2972  5336  8989 14407 22180 33028 47818 ...
Triangle begins:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 3,  4;
  0, 1, 4,  8,  8;
  0, 1, 5, 13, 20,  16;
  0, 1, 6, 19, 38,  48,  32;
  0, 1, 7, 26, 63, 104, 112, 64;
  ...
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) where DELTA is the operator defined in A084938 begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  4,  0;
  1, 4,  8,  8,   0;
  1, 5, 13, 20,  16,   0;
  1, 6, 19, 38,  48,  32,  0;
  1, 7, 26, 63, 104, 112, 64, 0;
		

Crossrefs

Diagonal sums are even-indexed Fibonacci numbers. Alternating (+-) diagonal sums are signed Fibonacci numbers.
T(n, n-1) = A001850(n) (Delannoy numbers). T(n, n)=A047781. Cf. A035028, A055587.

Programs

  • Haskell
    a049600 n k = a049600_tabl !! n !! k
    a049600_row n = a049600_tabl !! n
    a049600_tabl = [0] : map (0 :) a208341_tabl
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    A049600 := proc(n,k)
        add(binomial(k+j,j)*binomial(n-1,j),j=0..n-1) ;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    t[n_, k_] := Hypergeometric2F1[ n-k+1, 1-k, 1, -1] // Floor; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
    t[n_, k_] := Sum[LaguerreL[n-k, i, 0]* LaguerreL[k-i, i, 0], {i,0,k}] //Floor; Table[t[n,k], {n, 0, 16}, {k, -1, n}] (* Richard Turk, Sep 08 2017 *)
    T[n_, k_] := If[k == 0, 0, JacobiP[k - 1, 0, 1 - 2*k + n, 3]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)
  • PARI
    {A(i, j) = polcoeff( (x / (1 - 2*x)) * ((1 - x) / (1 - 2*x))^j + x * O(x^i), i)}; /* Michael Somos, Oct 01 2003 */
    
  • PARI
    T(n,k)=sum(j=0,n-1,binomial(k+j,j)*binomial(n-1,j)) \\ Paul D. Hanna, Oct 06 2006
    

Formula

T(n,k) = Sum_{j=0..n-1} C(k+j,j)*C(n-1,j). - Paul D. Hanna, Oct 06 2006
T(i,j) = 2*T(i-1,j) + T(i,j-1) - T(i-1,j-1) with T(0,0)=1 and T(i,j)=0 if one of i,j<0. - Theodore Kolokolnikov, Jul 05 2010
O.g.f.: t*x/(1 - (2*t+1)*x + t*x^2) = t*x + (t + 2*t^2)*x^2 + (t + 3*t^2 + 4*t^3)*x^3 + .... Taking the row reverse of this triangle (with an additional column of 1's) gives A055587. - Peter Bala, Sep 10 2012
T(i,0) = 2^(i-1) and for j>0, T(i,j) = T(i,j-1) + Sum_{k=0..i-1} T(k,j). - Glen Whitney, Aug 17 2021
T(n, k) = JacobiP(k - 1, 0, 1 - 2*k + n, 3) for k >= 1. - Peter Luschny, Nov 25 2021