A049666 a(n) = Fibonacci(5*n)/5.
0, 1, 11, 122, 1353, 15005, 166408, 1845493, 20466831, 226980634, 2517253805, 27916772489, 309601751184, 3433536035513, 38078498141827, 422297015595610, 4683345669693537, 51939099382224517, 576013438874163224
Offset: 0
Examples
G.f. = x + 11*x^2 + 122*x^3 + 1353*x^4 + 15005*x^5 + 166408*x^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
- Index entries for linear recurrences with constant coefficients, signature (11,1).
Crossrefs
Programs
-
Magma
[Fibonacci(5*n)/5: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
Maple
A049666 := proc(n) combinat[fibonacci](5*n)/5 ; end proc: # R. J. Mathar, May 07 2024
-
Mathematica
Table[Fibonacci[5*n]/5, {n, 0, 100}] (* T. D. Noe, Oct 29 2009 *) a[ n_] := Fibonacci[n, 11]; (* Michael Somos, May 28 2014 *)
-
MuPAD
numlib::fibonacci(5*n)/5 $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
PARI
a(n)=fibonacci(5*n)/5 \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
from sage.combinat.sloane_functions import recur_gen3 it = recur_gen3(0,1,11,11,1,0) [next(it) for i in range(1,22)] # Zerinvary Lajos, Jul 09 2008
-
Sage
[lucas_number1(n,11,-1) for n in range(0, 19)] # Zerinvary Lajos, Apr 27 2009
-
Sage
[fibonacci(5*n)/5 for n in range(0, 19)] # Zerinvary Lajos, May 15 2009
Formula
G.f.: x/(1 - 11*x - x^2).
a(n) = A102312(n)/5.
a(n) = 11*a(n-1) + a(n-2) for n > 1, a(0)=0, a(1)=1. With a=golden ratio and b=1-a, a(n) = (a^(5n)-b^(5n))/(5*sqrt(5)). - Mario Catalani (mario.catalani(AT)unito.it), Jul 24 2003
a(n) = F(n, 11), the n-th Fibonacci polynomial evaluated at x=11. - T. D. Noe, Jan 19 2006
a(n) = ((11+sqrt(125))^n-(11-sqrt(125))^n)/(2^n*sqrt(125)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
(End)
a(n) = F(n) + (-1)^n*5*F(n)^3 + 5*F(n)^5, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - Wolfdieter Lang, Aug 31 2012
a(-n) = -(-1)^n * a(n). - Michael Somos, May 28 2014
E.g.f.: (exp((1/2)*(11-5*sqrt(5))*x)*(-1 + exp(5*sqrt(5)*x)))/(5*sqrt(5)). - Stefano Spezia, Aug 02 2019
Comments