A049686 a(n) = Fibonacci(8n)/3.
0, 7, 329, 15456, 726103, 34111385, 1602508992, 75283811239, 3536736619241, 166151337293088, 7805576116155895, 366695926122033977, 17226902951619441024, 809297742799991694151, 38019767008647990184073, 1786119751663655546957280, 83909608561183162716808087, 3941965482623944992143022809
Offset: 0
Examples
a(2) = F(8 * 2) / 3 = F(16) / 3 = 987 / 3 = 329. - _Indranil Ghosh_, Feb 05 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..597
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (47,-1).
Programs
-
GAP
List([0..20], n-> Fibonacci(8*n)/3 ); # G. C. Greubel, Dec 14 2019
-
Magma
[Fibonacci(8*n)/3: n in [0..20]]; // G. C. Greubel, Dec 14 2019
-
Maple
with(combinat); seq( fibonacci(8*n)/3, n=0..20); # G. C. Greubel, Dec 14 2019
-
Mathematica
Fibonacci[8(Range[20]-1)]/3 (* G. C. Greubel, Dec 14 2019 *) LinearRecurrence[{47,-1},{0,7},20] (* Harvey P. Dale, Dec 27 2019 *)
-
PARI
a(n) = fibonacci(8*n)/3; \\ Michel Marcus, Feb 05 2017
-
Sage
[fibonacci(8*n)/3 for n in (0..20)] # G. C. Greubel, Dec 14 2019
Formula
a(n) = 47*a(n-1) - a(n-2), n>1. a(0)=0, a(1)=7.
G.f.: 7*x/(1-47*x+x^2).
a(n) = A004187(2n).
a(n) = 7*A049668(n). - R. J. Mathar, Oct 26 2015
E.g.f.: 2*exp(47*x/2)*sinh(21*sqrt(5)*x/2)/(3*sqrt(5)). - Stefano Spezia, Dec 14 2019
Extensions
Better description and more terms from Michael Somos
Comments