cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050205 Triangle read by rows: number of terms in unit fraction representation of k/n using the greedy algorithm, 1<=k<=n-1.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 3, 3, 1, 1, 2, 2, 1, 2, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 4, 4, 4, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 4, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 3
Offset: 2

Views

Author

Keywords

Examples

			2/3 = 1/2 + 1/6. So T(3,2) = 2.
n\k | 1  2  3  4  5  6  7  8
----*------------------------
  2 | 1;
  3 | 1, 2;
  4 | 1, 1, 2;
  5 | 1, 2, 2, 3;
  6 | 1, 1, 1, 2, 2;
  7 | 1, 2, 3, 2, 3, 3;
  8 | 1, 1, 2, 1, 2, 2, 3;
  9 | 1, 2, 1, 2, 2, 2, 3, 3;
		

Crossrefs

Cf. A050206, A050210 (Largest denominator), A260618.

Extensions

Offset changed to 2 by Seiichi Manyama, Sep 18 2022

A050206 Triangle read by rows: smallest denominator of the expansion of k/n using the greedy algorithm, 1<=k<=n-1.

Original entry on oeis.org

2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 6, 3, 2, 2, 2, 7, 4, 3, 2, 2, 2, 8, 4, 3, 2, 2, 2, 2, 9, 5, 3, 3, 2, 2, 2, 2, 10, 5, 4, 3, 2, 2, 2, 2, 2, 11, 6, 4, 3, 3, 2, 2, 2, 2, 2, 12, 6, 4, 3, 3, 2, 2, 2, 2, 2, 2, 13, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 14, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 15, 8, 5, 4, 3, 3, 3, 2
Offset: 2

Views

Author

Keywords

Examples

			n\k | 1  2  3  4  5  6  7  8
----*------------------------
  2 | 2;
  3 | 3, 2;
  4 | 4, 2, 2;
  5 | 5, 3, 2, 2;
  6 | 6, 3, 2, 2, 2;
  7 | 7, 4, 3, 2, 2, 2;
  8 | 8, 4, 3, 2, 2, 2, 2;
  9 | 9, 5, 3, 3, 2, 2, 2, 2;
		

Crossrefs

Cf. A050205, A050210 (Largest denominator), A260618.

Formula

T(n,k) = ceiling(n/k).

Extensions

Offset changed to 2 by Seiichi Manyama, Sep 18 2022

A260618 Irregular triangle read by rows: denominators of the expansion of k/n using the greedy algorithm, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 3, 2, 6, 1, 4, 2, 2, 4, 1, 5, 3, 15, 2, 10, 2, 4, 20, 1, 6, 3, 2, 2, 6, 2, 3, 1, 7, 4, 28, 3, 11, 231, 2, 14, 2, 5, 70, 2, 3, 42, 1, 8, 4, 3, 24, 2, 2, 8, 2, 4, 2, 3, 24, 1, 9, 5, 45, 3, 3, 9, 2, 18, 2, 6, 2, 4, 36, 2, 3, 18, 1, 10, 5, 4, 20, 3, 15, 2, 2, 10, 2, 5, 2, 4, 20, 2, 3, 15, 1, 11, 6, 66, 4, 44, 3, 33, 3, 9, 99, 2, 22, 2, 8, 88, 2, 5, 37, 4070, 2, 4, 15, 660, 2, 3, 14, 231, 1
Offset: 1

Views

Author

Matthew Campbell, Sep 17 2015

Keywords

Examples

			Triangle begins ({} included for fraction separation):
  {1};
  {2}, {1};
  {3}, {2, 6}, {1};
  {4}, {2}, {2, 4}, {1};
  {5}, {3, 15}, {2, 10}, {2, 4, 20}, {1};
  {6}, {3}, {2}, {2, 6}, {2, 3}, {1};
  {7}, {4, 28}, {3, 11, 231}, {2, 14}, {2, 5, 70}, {2, 3, 42}, {1};
  {8}, {4}, {3, 24}, {2}, {2, 8}, {2, 4}, {2, 3, 24}, {1};
  {9}, {5, 45}, {3}, {3, 9}, {2, 18}, {2, 6}, {2, 4, 36}, {2, 3, 18}, {1};
  {10}, {5}, {4, 20}, {3, 15}, {2}, {2, 10}, {2, 5}, {2, 4, 20}, {2, 3, 15}, {1};
  {11}, {6, 66}, {4, 44}, {3, 33}, {3, 9, 99}, {2, 22}, {2, 8, 88}, {2, 5, 37, 4070}, {2, 4, 15, 660}, {2, 3, 14, 231}, {1};
		

Crossrefs

Programs

  • PARI
    rep(f)={L=List(); while(f<>0, my(t=ceil(1/f)); listput(L,t); f-=1/t); Vec(L)}
    row(n)={concat(apply(k->rep(k/n), [1..n]))}
    for(n=1, 11, print(row(n))) \\ Andrew Howroyd, Feb 26 2018

A100140 Largest denominator of greedy Egyptian fraction sum for M/N.

Original entry on oeis.org

2, 6, 4, 20, 6, 231, 24, 45, 20, 4070, 12, 2145, 231, 120, 240, 3039345, 45, 2359420, 180, 1428, 4070, 1019084, 120, 53307975, 2145, 1350, 1428, 1003066152, 120, 1127619917796295, 16800, 26796, 3039345, 1104740, 72, 884004, 2359420, 1288092
Offset: 2

Views

Author

Robert Munafo, Nov 06 2004

Keywords

Comments

Each term gives the largest of the N-1 terms in A050210 corresponding to the fractions with denominator N.

Examples

			Consider a(5). There are 4 fractions with 5 in the denominator: 1/5=1/5, 2/5=1/3+1/15, 3/5=1/2+1/10 and 4/5=1/2+1/4+1/20. Of these, the largest denominator is 20, so a(5)=20.
		

References

  • R. K. Guy, "Egyptian Fractions." section D11 in "Unsolved Problems in Number Theory", 2nd ed. New York: Springer-Verlag, pp. 158-166, 1994.

Crossrefs

Programs

  • Maxima
    /* MACSYMA or maxima */ egypt(x) := block([i,n,d,p,e, on, od], ( n : num(x), d : n/x, on : n, od : d, p : 0, e : [], for i:1 while x>0 do ( n : num(x), d : n/x, p : fix((d+n-1)/n), x : x - 1/p, e : append(e, [p]) ), return(p) ) ); for b:2 step 1 thru 100 do ( max:2, for a:2 step 1 thru b-1 do ( if gcd(a,b)=1 then ( m : egypt(a/b), if m>max then max : m ) ), print("a[", b, "]=", max) ), t$

Extensions

a(6) corrected by Seiichi Manyama, Sep 18 2022

A091834 Triangle read by rows: T(n,k) = maximum denominator in the Egyptian fraction representation that minimizes the maximum denominator of the k-th entry of row n of the triangle of numbers 1/2; 1/3, 2/3; 1/4, 2/4, 3/4; ...

Original entry on oeis.org

2, 3, 6, 4, 2, 4, 5, 15, 10, 10, 6, 3, 2, 6, 3, 7, 21, 21, 14, 14, 21, 8, 4, 8, 2, 8, 4, 8, 9, 18, 3, 9, 18, 6, 9, 18, 10, 5, 10, 15, 2, 10, 5, 10, 15, 11, 44, 44, 33, 33, 22, 22, 44, 44, 33
Offset: 0

Views

Author

David Eppstein, Mar 09 2004

Keywords

Examples

			The 47th position, corresponding to the fraction 2/11, has value 44 because 2/11=1/12+1/22+1/33+1/44 and there is no way of writing 2/11 as a sum of distinct unit fractions with all denominators less than 44.
		

Crossrefs

Cf. A050210.

A362289 a(n) is the largest denominator when the greedy algorithm for Egyptian fractions is applied to 1/n + 1/(n+1).

Original entry on oeis.org

2, 3, 12, 180, 30, 1428, 56, 2520, 90, 2310, 132, 100292556, 182, 9240, 240, 119952, 306, 614444040, 380, 23100, 462, 42190274940, 552, 77390453400, 650, 201474, 756, 23370247110, 870, 200880, 992, 14523137084239067683872, 1122, 2206260, 1260, 104845560637757648698080
Offset: 1

Views

Author

Sebastian F. Orellana, Apr 14 2023

Keywords

Examples

			For n=16, 1/16 + 1/17 = 33/272 which written in Egyptian fractions is 1/9 + 1/98 + 1/119952 and the largest denominator is 119952.
		

Crossrefs

Cf. A050210.

Programs

  • Mathematica
    egyptFraction[f_] := Ceiling[1/Most[NestWhileList[# - 1/Ceiling[1/#] &, f, # != 0 &]]]; a[n_] := egyptFraction[1/n + 1/(n + 1)][[-1]]; Array[a, 40] (* Amiram Eldar, Apr 14 2023 *)

Formula

a(n) = A050210(n*(n+1), 2*n+1). - Michel Marcus, Apr 14 2023
Showing 1-6 of 6 results.