cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050233 a(n) is the number of n-tosses having a run of 5 or more heads for a fair coin (i.e., probability is a(n)/2^n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 8, 20, 48, 112, 255, 571, 1262, 2760, 5984, 12880, 27553, 58631, 124192, 262008, 550800, 1154256, 2412031, 5027575, 10455246, 21697060, 44940472, 92920992, 191818561, 395386763, 813872712, 1673157228, 3435591712, 7046697888, 14438448127, 29555251315, 60444113566
Offset: 1

Views

Author

Keywords

Comments

a(n-1) is the number of compositions of n with at least one part >= 6. - Joerg Arndt, Aug 06 2012

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, p. 300, 1968.

Crossrefs

Column 6 of A109435.

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 50);
    [0,0,0,0] cat Coefficients(R!( x^5/((1-2*x)*(1-x-x^2-x^3-x^4-x^5)) )); // G. C. Greubel, Jun 01 2025
    
  • Mathematica
    f[x_] := x^4 / (1-3x+x^2+x^3+x^4+x^5+2x^6); CoefficientList[ Series[f[x], {x, 0, 31}], x] (* Jean-François Alcover, Nov 18 2011 *)
    LinearRecurrence[{3,-1,-1,-1,-1,-2},{0,0,0,0,1,3},40] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -2,-1,-1,-1,-1,3]^(n-1)*[0;0;0;0;1;3])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
    
  • SageMath
    def A050233_list(prec):
        P.= PowerSeriesRing(QQ, prec)
        return P( x^5/((1-2*x)*(1-x-x^2-x^3-x^4-x^5)) ).list()
    a=A050233_list(41); a[1:] # G. C. Greubel, Jun 01 2025

Formula

a(n) = 2^(n+1) - pentanacci(n+6), cf. A001591. - Vladeta Jovovic, Feb 23 2003
G.f.: x^5/((1-2*x)*(1-x-x^2-x^3-x^4-x^5)). - Geoffrey Critzer, Jan 29 2009
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - 2*a(n-6). - Wesley Ivan Hurt, Jan 03 2021