cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050409 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n} k^2.

Original entry on oeis.org

0, 5, 29, 86, 190, 355, 595, 924, 1356, 1905, 2585, 3410, 4394, 5551, 6895, 8440, 10200, 12189, 14421, 16910, 19670, 22715, 26059, 29716, 33700, 38025, 42705, 47754, 53186, 59015, 65255, 71920, 79024, 86581, 94605, 103110, 112110, 121619
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

Keywords

Crossrefs

Cf. A225144. - Bruno Berselli, Jun 06 2013
Cf. A045943: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(14*n+1)/6); # G. C. Greubel, Oct 30 2019
  • Magma
    [&+[k^2: k in [n..2*n]]: n in [0..40]]; // Bruno Berselli, Feb 11 2011
    
  • Magma
    I:=[0, 5, 29, 86]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    seq(add((n+k)^2,k=0..n),n=0..40); # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,29,86},40] (* Vincenzo Librandi, Jun 22 2012 *)
    Table[(n(n+1)(14n+1))/6,{n,0,40}] (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    a(n)=sum(k=n,n+n,k^2)
    
  • PARI
    vector(40, n, n*(n-1)*(14*n-13)/6) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [n*(n+1)*(14*n+1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = n*(n+1)*(14*n+1)/6.
a(n) = A132121(n,4) for n>3. - Reinhard Zumkeller, Aug 12 2007
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5+9*x)/(1-x)^4.
a(n) = A129371(2*n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 22 2012
E.g.f.: x*(30 + 57*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019