A050441 Partial sums of A051865.
0, 1, 14, 50, 120, 235, 406, 644, 960, 1365, 1870, 2486, 3224, 4095, 5110, 6280, 7616, 9129, 10830, 12730, 14840, 17171, 19734, 22540, 25600, 28925, 32526, 36414, 40600, 45095, 49910, 55056, 60544, 66385, 72590, 79170, 86136, 93499, 101270
Offset: 0
Examples
After 0, the sequence is provided by the row sums of the triangle (see above, fourth formula): 1; 2, 12; 3, 24, 23; 4, 36, 46, 34; 5, 48, 69, 68, 45; ... - _Vincenzo Librandi_, Feb 12 2014
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189-196.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> n*(n+1)*(11*n-8)/6); # G. C. Greubel, Aug 30 2019
-
Magma
I:=[0,1,14,50]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
Maple
seq(n*(n+1)*(11*n-8)/6, n=0..40); # G. C. Greubel, Aug 30 2019
-
Mathematica
Accumulate[Table[n (11n-9)/2,{n,0,40}]] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,1,14,50},40] (* Harvey P. Dale, Nov 14 2011 *) CoefficientList[Series[x (1 + 10 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
-
PARI
a(n)=n*(n+1)*(11*n-8)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[n*(n+1)*(11*n-8)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
a(n) = n*(n+1)*(11*n-8)/6.
G.f.: x*(1+10*x)/(1-x)^4. - Bruno Berselli, Aug 19 2010
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Bruno Berselli, Aug 19 2010
a(n) = Sum_{i=0..n-1} (n-i)*(11*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: exp(x)*x*(6 + 36*x + 11*x^2)/6. - Stefano Spezia, May 04 2022
Comments