cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050441 Partial sums of A051865.

Original entry on oeis.org

0, 1, 14, 50, 120, 235, 406, 644, 960, 1365, 1870, 2486, 3224, 4095, 5110, 6280, 7616, 9129, 10830, 12730, 14840, 17171, 19734, 22540, 25600, 28925, 32526, 36414, 40600, 45095, 49910, 55056, 60544, 66385, 72590, 79170, 86136, 93499, 101270
Offset: 0

Views

Author

Barry E. Williams, Dec 23 1999

Keywords

Comments

This sequence is related to A180223 by 2*a(n) = n*A180223(n) - Sum_{i=0..n-1} A180223(i). Also, 13-gonal (or tridecagonal) pyramidal numbers. - Bruno Berselli, Dec 14 2010

Examples

			After 0, the sequence is provided by the row sums of the triangle (see above, fourth formula):
  1;
  2, 12;
  3, 24, 23;
  4, 36, 46, 34;
  5, 48, 69, 68, 45; ... - _Vincenzo Librandi_, Feb 12 2014
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189-196.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.

Crossrefs

Similar sequences are listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(11*n-8)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    I:=[0,1,14,50]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(11*n-8)/6, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Accumulate[Table[n (11n-9)/2,{n,0,40}]] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,1,14,50},40] (* Harvey P. Dale, Nov 14 2011 *)
    CoefficientList[Series[x (1 + 10 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n)=n*(n+1)*(11*n-8)/6 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [n*(n+1)*(11*n-8)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = n*(n+1)*(11*n-8)/6.
G.f.: x*(1+10*x)/(1-x)^4. - Bruno Berselli, Aug 19 2010
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Bruno Berselli, Aug 19 2010
a(n) = Sum_{i=0..n-1} (n-i)*(11*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: exp(x)*x*(6 + 36*x + 11*x^2)/6. - Stefano Spezia, May 04 2022