cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A226254 Number of ways of writing n as the sum of 10 triangular numbers from A000217.

Original entry on oeis.org

1, 10, 45, 130, 300, 612, 1105, 1830, 2925, 4420, 6341, 9000, 12325, 16290, 21645, 27932, 34980, 44370, 54900, 66430, 81702, 98050, 115440, 138330, 162565, 187800, 220545, 254800, 289265, 334890, 382058, 427350, 488700, 550420, 609960, 691812, 770185, 845750, 949365, 1049400, 1145580, 1274580
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2013

Keywords

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

G.f. is 10th power of g.f. for A010054.
a(n) = (A050456(4*n+5) - A030212(4*n+5))/640. See the Ono et al. link, case k=10, Theorem 6. - Wolfdieter Lang, Jan 13 2017
a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 10*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

A000144 Number of ways of writing n as a sum of 10 squares.

Original entry on oeis.org

1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 262080, 386920, 489600, 600960, 840500, 1137960, 1330420, 1563840, 2050344, 2611200, 2986560, 3358080, 4194240, 5318268, 5878440, 6299520, 7862400, 9619560
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 20*x + 180*x^2 + 960*x^3 + 3380*x^4 + 8424*x^5 + 16320*x^6 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)

Crossrefs

Row d=10 of A122141 and of A319574, 10th column of A286815.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^10;
    # Alternative:
    A000144list := proc(len) series(JacobiTheta3(0, x)^10, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000144list(30); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[10, n], {n, 0, 30}] (* Ray Chandler, Jun 29 2008; updated by T. D. Noe, Jan 23 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^10, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^10 * (1 + x^k)^30 / (1 + x^(2*k))^20, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 24 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^10, n))}; /* Michael Somos, Sep 12 2005 */
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*10)
    Q.representation_number_list(37) # Peter Luschny, Jun 20 2014

Formula

Euler transform of period 4 sequence [ 20, -30, 20, -10, ...]. - Michael Somos, Sep 12 2005
Expansion of eta(q^2)^50 / (eta(q) * eta(q^4))^20 in powers of q. - Michael Somos, Sep 12 2005
a(n) = 4/5 * (A050456(n) + 16*A050468(n) + 8*A030212(n)) if n>0. - Michael Somos, Sep 12 2005
a(n) = (20/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A322143 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, -2, 1, 1, 1, -8, 1, 2, 1, 1, -26, 1, 6, 0, 1, 1, -80, 1, 26, -2, 0, 1, 1, -242, 1, 126, -8, -6, 1, 1, 1, -728, 1, 626, -26, -48, 1, 1, 1, 1, -2186, 1, 3126, -80, -342, 1, 7, 2, 1, 1, -6560, 1, 15626, -242, -2400, 1, 73, 6, 0, 1, 1, -19682, 1, 78126, -728, -16806, 1, 703, 26, -10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,  ...
  1,  1,   1,    1,    1,     1,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
  1,  1,   1,    1,    1,     1,  ...
  2,  6,  26,  126,  626,  3126,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

A050459 a(n) = Sum_{d|n, d==1 mod 4} d^3 - Sum_{d|n, d==3 mod 4} d^3.

Original entry on oeis.org

1, 1, -26, 1, 126, -26, -342, 1, 703, 126, -1330, -26, 2198, -342, -3276, 1, 4914, 703, -6858, 126, 8892, -1330, -12166, -26, 15751, 2198, -18980, -342, 24390, -3276, -29790, 1, 34580, 4914, -43092, 703, 50654, -6858, -57148, 126, 68922, 8892, -79506, -1330
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Inverse Möbius transform of [1 0 -3^3 0 5^3 0 -7^3 ...], which is multiplicative. - Christian G. Bower, May 18 2005

Crossrefs

Column k=3 of A322143.

Programs

  • Maple
    A050459 := proc(n) local a; a := 0 ; for d in numtheory[divisors](n) do if d mod 4 = 1 then a := a+d^3 ; elif d mod 4 = 3 then a := a-d^3 ; end if; end do;  a ; end proc:
    seq(A050459(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    s[n_, r_] := DivisorSum[n, #^3 &, Mod[#, 4]==r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* Amiram Eldar, Dec 06 2018 *)
    f[p_, e_] := If[Mod[p, 4] == 1, ((p^3)^(e+1)-1)/(p^3-1), ((-p^3)^(e+1)-1)/(-p^3-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Sep 27 2023 *)

Formula

a(n) = A050451(n) - A050454(n).
G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^3*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^3)^(e+1)-1)/(p^3-1) if p == 1 (mod 4) and ((-p^3)^(e+1)-1)/(-p^3-1) if p == 3 (mod 4). - Amiram Eldar, Sep 27 2023
a(n) = Sum_{d|n} d^3*sin(d*Pi/2). - Ridouane Oudra, Jun 02 2024

A204372 Expansion of phi(x)^2 * (5 * phi(-x)^8 + 64 * x * psi(-x)^8) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

5, 4, 4, -320, 4, 2504, -320, -9600, 4, 25924, 2504, -58560, -320, 114248, -9600, -200320, 4, 334088, 25924, -521280, 2504, 768000, -58560, -1119360, -320, 1565004, 114248, -2099840, -9600, 2829128, -200320, -3694080, 4, 4684800
Offset: 0

Views

Author

Michael Somos, Jan 14 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 5 + 4*x + 4*x^2 - 320*x^3 + 4*x^4 + 2504*x^5 - 320*x^6 - 9600*x^7 + 4*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5), 34); 5*A[1] + 4*A[2] + 4*A[3]; /* Michael Somos, May 04 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 (5 EllipticTheta[ 4, 0, q]^8 + 4 EllipticTheta[ 2, Pi/4, q^(1/2)]^8), {q, 0, n}]; (* Michael Somos, May 03 2015 *)
    a[ n_] := If[ n < 1, 5 Boole[n == 0], 4 DivisorSum[ n, #^4 KroneckerSymbol[ -4, #] &]]; (* Michael Somos, May 04 2015 *)
  • PARI
    {a(n) = if( n<1, 5 * (n==0), 4 * sumdiv( n, d, d^4 * kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^2 + A)^2 * (5 * eta(x + A)^8 / eta(x^4 + A)^4 + 64 * x * eta(x^4 + A)^4 ), n))};
    

Formula

Expansion of eta(q)^4 * eta(q^2)^2 * (5 * eta(q)^8 / eta(q^4)^4 + 64 * q * eta(q^4)^4 ) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4*t)) = 2048 (t/i)^5 g(t) where q = exp(2*Pi*i*t) and g(t) is the g.f. for A050468.
G.f.: 5 + 4 * Sum_{k>0} (-1)^(k-1) * (2*k - 1)^4 * x^(2*k - 1) / (1 - x^(2*k - 1)).
a(n) = 4 * A050456(n) if n>0.
Showing 1-5 of 5 results.