cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052996 Expansion of (1+x^2-x^3)/((1-x)*(1-2*x)).

Original entry on oeis.org

1, 3, 8, 17, 35, 71, 143, 287, 575, 1151, 2303, 4607, 9215, 18431, 36863, 73727, 147455, 294911, 589823, 1179647, 2359295, 4718591, 9437183, 18874367, 37748735, 75497471, 150994943, 301989887, 603979775, 1207959551, 2415919103
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A050524 (primes of this sequence).

Programs

  • Magma
    [Floor(9*2^(n-2) - 1): n in [0..40]]; // Vincenzo Librandi, Sep 24 2011
    
  • Maple
    spec := [S, {S=Prod(Union(Prod(Z,Z), Sequence(Z)), Sequence(Union(Z,Z)))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    a[0] := 1; a[1] := 3; a[2] := 8; a[n_] := 2*a[n - 1] + 1; Table[a[n], {n, 0, 12}] (* L. Edson Jeffery, Dec 18 2014 *)
    CoefficientList[ Series[(1 + x^2 - x^3)/((1 - x) (1 - 2 x)), {x, 0, 30}], x] (* Robert G. Wilson v, Jul 29 2015 *)
    LinearRecurrence[{3,-2},{1,3,8,17},40] (* Harvey P. Dale, Feb 11 2018 *)
  • PARI
    Vec((1+x^2-x^3)/((1-x)*(1-2*x)) + O(x^50)) \\ Michel Marcus, Jul 30 2015

Formula

Recurrence: {-2*a(n)+a(n+1)-1=0, a(0)=1, a(1)=3, a(2)=8}.
a(n) = 9*2^(n-2) - 1 for n > 1. - Brad Clardy, Sep 23 2011

Extensions

More terms from James Sellers, Jun 06 2000

A002236 Numbers k such that 9*2^k - 1 is prime.

Original entry on oeis.org

1, 3, 7, 13, 15, 21, 43, 63, 99, 109, 159, 211, 309, 343, 415, 469, 781, 871, 939, 1551, 3115, 3349, 5589, 5815, 5893, 7939, 8007, 11547, 12495, 22555, 23647, 35647, 83415, 103059, 184999, 275859, 384243, 484975, 503893, 828709, 1010277, 1419855, 1481821
Offset: 1

Views

Author

Keywords

Comments

Even exponents can give at most semiprimes (see A181490). - Jeppe Stig Nielsen, Jun 08 2023

References

  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A050524.

Programs

  • Mathematica
    b=9; i=0; Table[While[i++; cp=b*2^i-1; !PrimeQ[cp]]; i, {j, 1, 22}] (* Lei Zhou, Nov 08 2013 *)
    Select[Range[3400],PrimeQ[9*2^#-1]&] (* The program generates the first 22 terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* Harvey P. Dale, Sep 01 2020 *)
  • PARI
    is(n)=ispseudoprime(9*2^n-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(42)-a(43) communicated by Jeppe Stig Nielsen, Jun 08 2023

A330412 Integers m such that sigma(m) + sigma(8*m) = 18*m.

Original entry on oeis.org

34, 568, 147328, 603971584, 9663643648, 39582416502784, 696341272098017608537735168, 765635325572111542783369494684623699968, 3615610599582728119969414707766982030374842621310535527825408, 3791242500068058721125048996612134914443116117566314438843154038784
Offset: 1

Views

Author

Jinyuan Wang, Feb 12 2020

Keywords

Comments

This is the case h = 8 of the h-perfect numbers as defined in the Harborth link.

Examples

			34 is a term since sigma(34) + sigma(8*34) = 612, that is 18*34.
		

Crossrefs

Programs

  • PARI
    isok(m) = sigma(m) + sigma(8*m) == 18*m;

Formula

a(n) = 2^A002236(n) * A050524(n).
Showing 1-3 of 3 results.