A050683 Number of nonzero palindromes of length n.
9, 9, 90, 90, 900, 900, 9000, 9000, 90000, 90000, 900000, 900000, 9000000, 9000000, 90000000, 90000000, 900000000, 900000000, 9000000000, 9000000000, 90000000000, 90000000000, 900000000000, 900000000000, 9000000000000
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Dr. Math, More info 1.
- Dr. Math, More info 2.
- Index entries for linear recurrences with constant coefficients, signature (0,10).
Crossrefs
Programs
-
GAP
a:=[9,9];; for n in [3..30] do a[n]:=10*a[n-2]; od; a; # Muniru A Asiru, Oct 07 2018
-
Magma
[9*10^Floor((n-1)/2): n in [1..30]]; // Vincenzo Librandi, Aug 16 2011
-
Maple
seq(9*10^floor((n-1)/2),n=1..30); # Muniru A Asiru, Oct 07 2018
-
Mathematica
With[{c=9*10^Range[0,20]},Riffle[c,c]] (* or *) LinearRecurrence[{0,10},{9,9},40] (* Harvey P. Dale, Dec 15 2013 *)
-
PARI
A050683(n)=9*10^((n-1)\2) \\ M. F. Hasler, Nov 16 2008
-
PARI
\\ using M. F. Hasler's is_A002113(n) from A002113 is_A002113(n)={Vecrev(n=digits(n))==n} for(n=1,8,j=0;for(k=10^(n-1),10^n-1,if(is_A002113(k),j++));print1(j,", ")) \\ Hugo Pfoertner, Oct 03 2018
-
PARI
is_palindrome(x)={my(d=digits(x));for(k=1,#d\2,if(d[k]!=d[#d+1-k],return(0)));return(1)} for(n=1,8,j=0;for(k=10^(n-1),10^n-1,if(is_palindrome(k),j++));print1(j,", ")) \\ Hugo Pfoertner, Oct 02 2018
-
PARI
a(n) = if(n<3, 9, 10*a(n-2)); \\ Altug Alkan, Oct 03 2018
-
Python
def A050683(n): return 9*10**(n-1>>1) # Chai Wah Wu, Jul 30 2025
Formula
a(n) = 9*10^floor((n-1)/2).
From Colin Barker, Apr 06 2012: (Start)
a(n) = 10*a(n-2).
G.f.: 9*x*(1+x)/(1-10*x^2). (End)
E.g.f.: 9*(cosh(sqrt(10)*x) + sqrt(10)*sinh(sqrt(10)*x) - 1)/10. - Stefano Spezia, Jun 11 2022
Comments