A051168 Triangular array T(h,k) for 0 <= k <= h read by rows: T(h,k) = number of binary Lyndon words with k ones and h-k zeros.
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 5, 5, 3, 1, 0, 0, 1, 3, 7, 8, 7, 3, 1, 0, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 0, 1, 6
Offset: 0
Examples
Triangle begins with: h=0: 1 h=1: 1, 1 h=2: 0, 1, 0 h=3: 0, 1, 1, 0 h=4: 0, 1, 1, 1, 0 h=5: 0, 1, 2, 2, 1, 0 h=6: 0, 1, 2, 3, 2, 1, 0 h=7: 0, 1, 3, 5, 5, 3, 1, 0 h=8: 0, 1, 3, 7, 8, 7, 3, 1, 0 h=9: 0, 1, 4, 9, 14, 14, 9, 4, 1, 0 ... T(6,3) counts classes {111000},{110100},{110010}, each of 6 aperiodic. The class {100100} contains 3 periodic words, counted by T(3,1) as {100}, consisting of 3 aperiodic words 100,010,001.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- Freddy Cachazo and Nick Early, Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes, arXiv:2010.09708 [math.CO], 2020.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238; MR1691428 (2000c:13006).
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188; MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
- Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018.
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- P. Stanica and S. Maitra, Rotation symmetric boolean functions - count and cryptographic properties, Disc. Appl. Math. 156 (2008) 1567-1580; see h_{n,w} in eq. (3).
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Maple
A := proc(r,n) local gf,d,genf; genf := 1/(1-x) ; gf := 0 ; for d in numtheory[divisors](r) do gf := gf + numtheory[mobius](d)*(subs(x= x^d,genf))^(r/d) ; od: gf := expand(gf/r) ; coeftayl(gf,x=0,n) ; end proc: A051168 := proc(n,k) if n<=1 then 1; elif n=0 or n=k then 0; else A(n-k,k) ; end if; end proc: seq(seq(A051168(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 29 2011
-
Mathematica
Table[If[n===0,1,1/n Plus@@(MoebiusMu[ # ]Binomial[n/#,k/# ]&/@ Divisors[GCD[n,k]])],{n,0,12},{k,0,n}] (* Wouter Meeussen, Jul 20 2008 *)
-
PARI
{T(n, k) = local(A, ps, c); if( k<0 || k>n, 0, if( n==0 && k==0, 1, A = x * O(x^n) + y * O(y^n); ps = 1 - x - y + A; for( m=1, n, for( i=0, m, c = polcoeff( polcoeff(ps, i, x), m-i, y); if( m==n && i==k, break(2), ps *= (1 -y^(m-i) * x^i + A)^c))); -c))} /* Michael Somos, Jul 03 2004 */
-
PARI
T(n,k) = if (n==0, 1, (1/n) * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d))); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 16 2018
Formula
T(h, k) = 1 for (h, k) in {(0, 0), (1, 0), (1, 1)}; T(h, k) = 0 if h >= 2 and k = 0 or k = h. Otherwise, T(h, k) = (1/h)*(C(h, k)-S(h, k)), where S(h, k) = Sum_{d <= 2, d|h, d|k} (h/d)*T(h/d, k/d).
1 - x - y = Product_{i,j} (1 - x^i * y^j)^T(i+j, j) where i >= 0, j >= 0 are not both zero. - Michael Somos, Jul 03 2004
The prime rows are given by (1+x)^p/p with noninteger coefficients rounded to zero. E.g., for h = 2 below, (1 + x)^2/2 = (1 + 2*x + x^2)/2 = 0.5 + x + 0.5*x^2 gives (0,1,0). - Tom Copeland, Oct 21 2014
T(n,k) = (1/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d, k/d), for n > 0. - Andrew Howroyd, Mar 26 2017
From Petros Hadjicostas, Jun 16 2019: (Start)
O.g.f. for column k >= 1: (x^k/k) * Sum_{d|k} mu(d)/(1 - x^d)^(k/d).
Bivariate o.g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{d >= 1} (mu(d)/d) *log(1 - x^d * (1 + y^d)).
(End)
Comments