cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A092964 Numbers > 1 in A051168, with a(0) = 1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 5, 5, 3, 3, 7, 8, 7, 3, 4, 9, 14, 14, 9, 4, 4, 12, 20, 25, 20, 12, 4, 5, 15, 30, 42, 42, 30, 15, 5, 5, 18, 40, 66, 75, 66, 40, 18, 5, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 7, 30, 91, 200, 333, 429, 429, 333, 200
Offset: 0

Views

Author

Thomas O. Hoffbauer (Thomas.Hoffbauer(AT)cibamberg.de), Apr 20 2004

Keywords

Comments

Original definition: Triangle read by rows in which row n gives the number of equal configurations under cyclic shift.
T(n,k) = A051168(n+3,k+1), if 0Michael Somos, Jul 17 2004
From Paul Weisenhorn, Dec 21 2010 (Start):
T(n,k) is the number of classes that have (k+1) ordered sums of (n+4) with (k+1) positive integers, that can be transformed into each other by a cyclic permutation.
m has 2^(m-1) ordered sums; for each sum one remove the first part z(1) and add 1 to the next z(1) parts to get a new ordered sum until a period is reached. T(n,k)=a(m) with m=(n+4)*(n+3)/2+k+1 gives for m the number of periods with length (n+4).
The numbers m=n*(n+3)/2 with 1<=n have one period with length (n+1).
The numbers m=n*(n+3)/2+2 with 1<=n have one period with length (n+2).
The triangular numbers n*(n+1)/2 with 1<=n have one period [(n+(n-1)+...+2+1)] with length 1. (End)

Examples

			As triangle, starts:
  1;
  2,2;
  2,3,2;
  3,5,5,3;
  3,7,8,7,3;
  4,9,14,14,9,4;
  4,12,20,25,20,12,4; ...
From _Paul Weisenhorn_, Dec 21 2010: (Start)
T(2,2)=3 classes with 3 ordered sums of 6; [(1+1+4),(1+4+1),(4+1+1)]; [(1+2+3),(2+3+1),(3+1+2)]; [(1+3+2),(3+2+1),(2+1+3)].
T(2,2)=a(m)=3 periods with length 6 for m=6*5/2+3=18 [(5+5+4+3+1),(6+5+4+2+1),(6+5+3+2+1+1),(6+4+3+2+2+1),(5+4+3+3+2+1),(5+4+4+3+2)]; [(5+5+3+3+2),(6+4+4+3+1),(5+5+4+2+1+1),(6+5+3+2+2),(6+4+3+3+1+1),(5+4+4+2+2+1)]; [(5+5+3+2+2+1),(6+4+3+3+2),(5+4+4+3+1+1),(5+5+4+2+2),(6+5+3+3+1),(6+4+4+2+1+1)]. (End)
		

Crossrefs

Row sums give A093210. Essentially the same as A051168. See A185158 for another version.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[k + 1, n + 4], Binomial[(n + 4)/#, (k + 1)/#] * MoebiusMu[#] & ]/(n + 4); Table[T[n, k], {n, 0, 12}, {k, 1, n + 1}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    T(n,k)=local(A,ps,c); n+=3; k++; if(k<1||k>=n-1, 0, A=x*O(x^n) + y*O(y^n); ps=1-x-y+A; for(m=1,n,for(i=0,m,c=polcoeff(polcoeff(ps,i,x),m-i, y); if(m==n&i==k,break(2),ps*=(1-y^(m-i)*x^i+A)^c)));-c) /* Michael Somos, Jul 17 2004 */

Extensions

Edited with better definition by Omar E. Pol, Jan 05 2009

A050181 T(2n+3, n), array T as in A051168; a count of Lyndon words.

Original entry on oeis.org

0, 1, 3, 9, 30, 99, 333, 1144, 3978, 13995, 49742, 178296, 643842, 2340135, 8554275, 31429026, 115997970, 429874830, 1598952366, 5967382200, 22338765540, 83859016527, 315614844558, 1190680751376, 4501802223090, 17055399281284
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A003441.
A diagonal of the square array described in A051168.

Programs

  • Maple
    A050181 := proc(n)
        A051168(2*n+3,n) ;
    end proc: # R. J. Mathar, Jul 20 2016
  • Mathematica
    a[n_] := (1/(2n+3)) Sum[MoebiusMu[d] Binomial[(2n+3)/d, n/d], {d, Divisors[ GCD[n, 3]]}];
    a /@ Range[0, 25] (* Jean-François Alcover, Sep 17 2019, from PARI *)
  • PARI
    a(n) = (1/(2*n+3))*sumdiv(gcd(n,3), d, moebius(d)*binomial((2*n+3)/d, n/d)); \\ Michel Marcus, Nov 18 2017

Formula

Conjecture: -(n-1)*(n+3)*(n+2)*a(n) + 2*(3*n-4)*(n+2)*(n+1)*a(n-1) - 4*n*(n+1)*(2*n-5)*a(n-2) + 2*(n-1)*(n+2)*(2*n-3)*a(n-3) - 4*(2*n-5)*(3*n-4)*(n+1)*a(n-4) + 8*n*(2*n-5)*(2*n-7)*a(n-5) = 0. - R. J. Mathar, Jul 20 2016
From Petros Hadjicostas, Nov 16 2017: (Start)
a(n) = (1/(2*n+3))*Sum_{d|gcd(n,3)} mu(d)*binomial((2*n+3)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+3))*(binomial(2*n+3, n) - binomial((2*n/3)+1, n/3)) if 3|n; = (1/(2*n+3))*binomial(2*n+3, n) otherwise.
Using the above formulae, one can verify R. J. Mathar's conjecture above.
(End)

A050182 a(n) = T(2*n+4, n), array T as in A051168 (a count of Lyndon words).

Original entry on oeis.org

0, 1, 3, 12, 40, 143, 497, 1768, 6288, 22610, 81686, 297160, 1086384, 3991995, 14732005, 54587280, 202995232, 757398510, 2834502346, 10637507400, 40023606896, 150946230006, 570534474698, 2160865067312, 8199711007200
Offset: 0

Views

Author

Keywords

Comments

We have A051168(n,k) = (1/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d, k/d) for 0 <= k <= n with n > 0. If n is odd, gcd(2*n + 4, n) = 1. If n is even, gcd(2*n + 4, n) = 2 or 4, but mu(2) = -1 and mu(4) = 0. From these facts, we can prove the formula below. - Petros Hadjicostas, Jul 27 2020

Crossrefs

A diagonal of the square array described in A051168.

Programs

  • Maple
    A050182 := proc(n)
        binomial(2*n+4,n) ;
        if type(n,'even') then
            %-binomial(n+2,n/2) ;
        end if;
        %/(2*n+4) ;
    end proc:
    seq(A050182(n),n=0..40) ; # R. J. Mathar, Oct 28 2021

Formula

a(n) = binomial(2*n + 4, n)/(2*n + 4), if n is odd, and a(n) = (binomial(2*n + 4, n) - binomial(n + 2, n/2))/(2*n + 4), if n is even. - Petros Hadjicostas, Jul 27 2020
D-finite with recurrence -(n+4) *(n+3) *(11*n-8)*a(n) +10 *(n+3) *(7*n^2+6*n-10) *a(n-1) -60 *n *(n^2-n-5)*a(n-2) -40 *n *(7*n^2+6*n-10) *a(n-3) +16*(n-1) *(13*n+4) *(2*n-3) *a(n-4)=0. - R. J. Mathar, Oct 28 2021

A051170 T(n,5), array T as in A051168; a count of Lyndon words; aperiodic necklaces with 5 black beads and n-5 white beads.

Original entry on oeis.org

0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682
Offset: 5

Views

Author

Keywords

Crossrefs

Cf. A000031, A001037, A051168. Same as A011795(n-1).
First differences of A036837.

Programs

  • Magma
    [ Floor(Binomial(n,5)/n): n in [5..30]]; // G. C. Greubel, Nov 26 2017
  • Mathematica
    Table[Floor[Binomial[n, 5]/n], {n, 5, 50}] (* G. C. Greubel, Nov 26 2017 *)
  • PARI
    for(n=5,30, print1(floor(binomial(n,5)/n), ", ")) \\ G. C. Greubel, Nov 26 2017
    

Formula

G.f.: -x^6*(x^2-x+1) / ((x-1)^5*(x^4+x^3+x^2+x+1)). - Colin Barker, Jun 05 2013
a(n) = floor(C(n,5)/n). - Alois P. Heinz, Jun 05 2013
G.f.: x^5/5 * (1/(1-x)^5 - 1/(1-x^5)). - Herbert Kociemba, Oct 16 2016

A050183 T(2n+5,n), array T as in A051168; a count of Lyndon words.

Original entry on oeis.org

0, 1, 4, 15, 55, 200, 728, 2652, 9690, 35530, 130750, 482885, 1789515, 6653325, 24812400, 92798375, 347993910, 1308233790, 4929576600, 18615637950, 70441574000, 267058714626, 1014283603024, 3858687620200, 14702930414900
Offset: 0

Views

Author

Keywords

Crossrefs

A diagonal of the square array described in A051168.

Programs

  • Maple
    A050183 := proc(n)
        binomial(2*n+5,n) ;
        if modp(n,5) = 0 then
            %-binomial(2*n/5+1,n/5) ;
        end if;
        %/(2*n+5) ;
    end proc:
    seq(A050183(n),n=0..40) ; # R. J. Mathar, Oct 28 2021
  • PARI
    a(n) = (1/(2*n+5))*sumdiv(gcd(n,5), d, moebius(d)*binomial((2*n+5)/d, n/d)); \\ Michel Marcus, Dec 05 2017

Formula

From Petros Hadjicostas, Dec 03 2017: (Start)
a(n) = (1/(2*n+5))*Sum_{d|gcd(n,5)} mu(d)*binomial((2*n+5)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+5))*(binomial(2*n+5, n) - binomial((2*n/5)+1, n/5)) if 5|n; = (1/(2*n+5))*binomial(2*n+5, n) otherwise.
(End)

A050185 T(2n+7,n), array T as in A051168; a count of Lyndon words.

Original entry on oeis.org

0, 1, 5, 22, 91, 364, 1428, 5537, 21318, 81719, 312455, 1193010, 4552275, 17368680, 66284554, 253086480, 966955410, 3697182450, 14147884842, 54185826156, 207712333598, 796937116661, 3060338457400, 11762344331920
Offset: 0

Views

Author

Keywords

Comments

Is a(n) = A000588(n+3)/7 if n is not a multiple of 7? R. J. Mathar, Jul 24 2012

A050184 T(2n+6,n), array T as in A051168; a count of Lyndon words.

Original entry on oeis.org

0, 1, 4, 18, 70, 273, 1026, 3876, 14520, 54477, 204248, 766935, 2882934, 10855425, 40939888, 154663938, 585260496, 2218309470, 8421352956, 32018897274, 121918083980, 464879984481, 1774996216144, 6785967883800
Offset: 0

Views

Author

Keywords

A051172 T(n,7), array T as in A051168; a count of Lyndon words; aperiodic necklaces with 7 black beads and n-7 white beads.

Original entry on oeis.org

0, 1, 4, 12, 30, 66, 132, 245, 429, 715, 1144, 1768, 2652, 3876, 5537, 7752, 10659, 14421, 19228, 25300, 32890, 42287, 53820, 67860, 84825, 105183, 129456, 158224, 192129, 231880, 278256, 332112, 394383, 466089, 548340
Offset: 7

Views

Author

Keywords

Crossrefs

Cf. A000031, A001037, A051168. Same as A011797(n-1).

Programs

  • Mathematica
    Drop[CoefficientList[Series[-(x^7/7)*(1/(1-x^7)+1/(-1+x)^7),{x,0,50}],x],7] (* Harvey P. Dale, Aug 04 2024 *)

Formula

G.f.: -(x^7/7)*(1/(1- x^7)+1/(-1+x)^7). - Herbert Kociemba, Oct 16 2016

Extensions

a(20) corrected by Herbert Kociemba, Oct 16 2016

A052314 Triangle: Matrix square of A051168.

Original entry on oeis.org

1, 2, 1, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 6, 3, 1, 0, 0, 1, 9, 7, 4, 1, 0, 0, 1, 18, 18, 14, 5, 1, 0, 0, 1, 30, 38, 36, 18, 6, 1, 0, 0, 1, 56, 84, 96, 60, 28, 7, 1, 0, 0, 1, 99, 174, 227, 171, 98, 33, 8, 1, 0, 0, 1, 186, 372, 552, 486, 332, 140, 47, 9, 1, 0, 0, 1, 335, 755
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Examples

			1; 2,1; 1,1,0; 1,2,0,0; 1,3,1,0,0; ...
		

A130513 Subtriangle of triangle in A051168: remove central column of A051168 and all columns to the right; now read by upwards diagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 2, 1, 0, 14, 7, 3, 1, 0, 42, 20, 9, 3, 1, 0, 132, 66, 30, 12, 4, 1, 0, 429, 212, 99, 40, 15, 4, 1, 0, 1430, 715, 333, 143, 55, 18, 5, 1, 0, 4862, 2424, 1144, 497, 200, 70, 22, 5, 1, 0, 16796, 8398, 3978, 1768, 728, 273, 91, 26, 6, 1, 0, 58786, 29372, 13995
Offset: 1

Views

Author

Philippe Deléham, Aug 08 2007

Keywords

Examples

			Triangle T(n,k), 1<=k<=n, begins:
1;
1, 0;
2, 1, 0;
5, 2, 1, 0;
14, 7, 3, 1, 0;
42, 20, 9, 3, 1, 0;
132, 66, 30, 12, 4, 1, 0;
429, 212, 99, 40, 15, 4, 1, 0;
		

References

  • A. Errera, Analysis situs: Un problème d'énumération, Memoires Acad. Bruxelles (1931), Serie 2, Vol. 11, No. 6, 26pp.

Crossrefs

Programs

  • Mathematica
    Table[1/(2n-k) Plus@@ (MoebiusMu[ # ]Binomial[(2n-k)/#,(n-k)/# ]&/@ Divisors[GCD[2n-k,n-k]]),{n,12},{k,n}] (* Wouter Meeussen, Jul 20 2008 *)

Formula

Sum_{k, 1<=k<=n} T(n,k) = A022553(n); Sum_{k, 1<=k<=n}k*T(n,k) = A002996(n).
T(n,k) = 1/(2n-k) Sum( d | gcd(2n-k,n-k) = mu(d) C((2n-k)/d,(n-k)/d) ). - Wouter Meeussen, Jul 20 2008

Extensions

Edited by N. J. A. Sloane, Oct 08 2007
Showing 1-10 of 54 results. Next