A051402 Inverse Mertens function: smallest k such that |M(k)| = n, where M(x) is Mertens's function A002321.
1, 5, 13, 31, 110, 114, 197, 199, 443, 659, 661, 665, 1105, 1106, 1109, 1637, 2769, 2770, 2778, 2791, 2794, 2795, 2797, 2802, 2803, 6986, 6987, 7013, 7021, 8503, 8506, 8507, 8509, 8510, 8511, 9749, 9822, 9823, 9830, 9831, 9833, 9857, 9861, 19043
Offset: 1
Examples
M(31) = -4, smallest one equal to +-4.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Crossrefs
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a051402 = (+ 1) . fromJust . (`elemIndex` ms) where ms = map (abs . a002321) [1..] -- Reinhard Zumkeller, Dec 26 2012
-
Maple
with(numtheory): k := 0: s := 0: for n from 1 to 20000 do s := s+mobius(n): if abs(s) > k then k := abs(s): print(n); fi; od:
-
Mathematica
a = s = 0; Do[s = s + MoebiusMu[n]; If[ Abs[s] > a, a = Abs[s]; Print[n]], {n, 1, 20000}]
-
PARI
M(n)=sum(k=1,n,moebius(k)); print1(1,", "); c=M(1); n=2; while(n<10^3,if(abs(M(n))>c,print1(n,", "); c=abs(M(n))); n++) \\ Derek Orr, Jun 14 2016
-
PARI
M(n) = sum(k=1, n, moebius(k)); a(n) = my(k = 1, s = moebius(1)); while (abs(s) != n, k++; s += moebius(k)); k; \\ Michel Marcus, Oct 12 2018
Comments