cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025555 Least common multiple (or LCM) of first n positive triangular numbers (A000217).

Original entry on oeis.org

1, 3, 6, 30, 30, 210, 420, 1260, 1260, 13860, 13860, 180180, 180180, 180180, 360360, 6126120, 6126120, 116396280, 116396280, 116396280, 116396280, 2677114440, 2677114440, 13385572200, 13385572200, 40156716600, 40156716600
Offset: 1

Views

Author

Keywords

Examples

			a(5) = lcm{1, 3, 6, 10, 15} = 30.
		

Crossrefs

Programs

  • Haskell
    a025555 n = a025555_list !! (n-1)
    a025555_list = scanl1 lcm $ tail a000217_list
    -- Reinhard Zumkeller, Nov 22 2013
    
  • Maple
    HalfFarey := proc (n) local a,b,c,d,k,s; if n<2 then RETURN([1]) fi; a:=0; b:=1; c:=1; d:=n; s:=NULL; do k := iquo(n+b,d); a,b,c,d := c, d, k*c-a, k*d-b; if b < 2*a then break fi; s := s, a/b od; [s] end:
    A025555 := proc(n) local r; HalfFarey(n+1); subsop(nops(%) = NULL,%); mul(2*sin(Pi*r),r = %)^2 end: seq(round(evalf(A025555(i))),i=1..27); # Peter Luschny, Jun 09 2011
  • Mathematica
    nn=30;With[{trnos=Accumulate[Range[nn]]},Table[LCM@@Take[trnos,n], {n,nn}]] (* Harvey P. Dale, Oct 21 2011 *)
    f[x_] := x + 1; a[1] = f[1]; a[n_] := LCM[f[n], a[n - 1]]; Array[a, 30]/2 (* Robert G. Wilson v, Jan 04 2013 *)
  • PARI
    S=1;for(n=1,20,S=lcm(S,n*(n+1)/2);print1(S,",")) \\ Edward Jiang, Sep 08 2014

Formula

a(n) = A003418(n+1)/2. - Matthew Vandermast, Jun 04 2012

Extensions

Corrected by James Sellers
Definition rendered more precisely by Reinhard Zumkeller, Nov 22 2013

A265574 LCM-transform of triangular numbers.

Original entry on oeis.org

1, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Crossrefs

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    t1:=[seq(n*(n+1)/2,n=1..100)];
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
    LCMXfm[Table[n*(n + 1)/2, {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)

Formula

From Andrey Zabolotskiy, Apr 11 2020: (Start)
a(n) = A051543(n-1) for n>1.
a(n) = A014963(n+1) for n>1. (End)

A051542 Quotients of consecutive values of LCM {b(1),...,b(n)}, b() = A000330.

Original entry on oeis.org

5, 14, 3, 11, 13, 2, 17, 19, 1, 23, 5, 3, 29, 62, 1, 1, 37, 1, 41, 43, 1, 47, 7, 1, 53, 1, 1, 59, 61, 2, 1, 67, 1, 71, 73, 1, 1, 79, 3, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 11, 1, 5, 254, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			a(3) = A051538(4)/A051538(3) = 210/70 = 3
		

Crossrefs

Programs

  • Haskell
    a051542 n = a051542_list !! (n-1)
    a051542_list = zipWith div (tail a051538_list) a051538_list
    -- Reinhard Zumkeller, Mar 12 2014

Formula

a(n) = A051538(n+1)/A051538(n)

Extensions

Corrected and extended by James Sellers
Example fixed by Reinhard Zumkeller, Mar 12 2014
Showing 1-3 of 3 results.