A051634 Strong primes: prime(k) > (prime(k-1) + prime(k+1))/2.
11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541, 557, 569, 587, 599, 613, 617, 631, 641, 659, 673, 701
Offset: 1
Examples
11 belongs to the sequence because 11 > (7 + 13)/2.
References
- A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Carlos Rivera, Conjecture 91. A conjecture about strong primes, The Prime Puzzles & Problems Connection.
Crossrefs
Programs
-
Haskell
a051634 n = a051634_list !! (n-1) a051634_list = f a000040_list where f (p:qs@(q:r:ps)) = if 2 * q > (p + r) then q : f qs else f qs -- Reinhard Zumkeller, May 09 2013
-
Maple
q:= n-> isprime(n) and 2*n>prevprime(n)+nextprime(n): select(q, [$3..1000])[]; # Alois P. Heinz, Jun 21 2023
-
Mathematica
Transpose[Select[Partition[Prime[Range[10^2]], 3, 1], #[[2]]>(#[[1]]+#[[3]])/2 &]][[2]] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *) p=Prime[Range[200]]; p[[Flatten[1+Position[Sign[Differences[p,2]], -1]]]]
-
PARI
p=2;q=3;forprime(r=5,1e4,if(2*q>p+r,print1(q", "));p=q;q=r) \\ Charles R Greathouse IV, Jul 19 2011
-
Python
from sympy import nextprime def aupto(limit): alst, p, q, r = [], 2, 3, 5 while q <= limit: if 2*q > p + r: alst.append(q) p, q, r = q, r, nextprime(r) return alst print(aupto(701)) # Michael S. Branicky, Nov 17 2021
Formula
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/2. - Alain Rocchelli, Mar 17 2024
Comments