A051662 House numbers: a(n) = (n+1)^3 + Sum_{i=1..n} i^2.
1, 9, 32, 78, 155, 271, 434, 652, 933, 1285, 1716, 2234, 2847, 3563, 4390, 5336, 6409, 7617, 8968, 10470, 12131, 13959, 15962, 18148, 20525, 23101, 25884, 28882, 32103, 35555, 39246, 43184, 47377, 51833, 56560, 61566, 66859, 72447, 78338, 84540, 91061, 97909
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Josh Deprez, Fair amenability for semigroups, arXiv preprint arXiv:1310.5589 [math.GR], 2013-2015.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
- following Gary W. Adamson's comment. a051662 = sum . zipWith (*) [1, 8, 15, 8] . a007318_row -- Reinhard Zumkeller, Feb 19 2015
-
Maple
a:=n->sum(k^2, k=1..n):seq(a(n)+sum(n^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
-
Mathematica
Table[(n+1)^3+Sum[i^2,{i,n}],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1}, {1,9,32,78},40] (* Harvey P. Dale, Jun 23 2011 *)
-
Maxima
A051662(n):=((8*n+21)*n+19)*n/6+1$ makelist(A051662(n),n,0,15); /* Martin Ettl, Dec 13 2012 */
-
PARI
a(n)=((8*n+21)*n+19)*n/6+1 \\ Charles R Greathouse IV, Jun 23 2011
Formula
a(n) = (n+1)*(8*n^2 + 13*n + 6)/6.
From Harvey P. Dale, Jun 23 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=1, a(1)=9, a(2)=32, a(3)=78.
G.f.: (1+5*x+2*x^2)/(x-1)^4. (End)
E.g.f.: exp(x)*(6 + 48*x + 45*x^2 + 8*x^3)/6. - Elmo R. Oliveira, Aug 06 2025
Extensions
Corrected by T. D. Noe, Nov 01 2006 and Nov 08 2006
Comments