cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051662 House numbers: a(n) = (n+1)^3 + Sum_{i=1..n} i^2.

Original entry on oeis.org

1, 9, 32, 78, 155, 271, 434, 652, 933, 1285, 1716, 2234, 2847, 3563, 4390, 5336, 6409, 7617, 8968, 10470, 12131, 13959, 15962, 18148, 20525, 23101, 25884, 28882, 32103, 35555, 39246, 43184, 47377, 51833, 56560, 61566, 66859, 72447, 78338, 84540, 91061, 97909
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

Binomial transform of [1, 8, 15, 8, 0, 0, 0, ...]. - Gary W. Adamson, Nov 23 2007
Principal diagonal of the convolution array A213751. - Clark Kimberling, Jun 20 2012

Crossrefs

Cf. A000330, A220084 (for a list of numbers of the form n*P(k,n) - (n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).

Programs

  • Haskell
    - following Gary W. Adamson's comment.
    a051662 = sum . zipWith (*) [1, 8, 15, 8] . a007318_row
    -- Reinhard Zumkeller, Feb 19 2015
  • Maple
    a:=n->sum(k^2, k=1..n):seq(a(n)+sum(n^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[(n+1)^3+Sum[i^2,{i,n}],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1}, {1,9,32,78},40] (* Harvey P. Dale, Jun 23 2011 *)
  • Maxima
    A051662(n):=((8*n+21)*n+19)*n/6+1$ makelist(A051662(n),n,0,15); /* Martin Ettl, Dec 13 2012 */
    
  • PARI
    a(n)=((8*n+21)*n+19)*n/6+1 \\ Charles R Greathouse IV, Jun 23 2011
    

Formula

a(n) = (n+1)*(8*n^2 + 13*n + 6)/6.
a(n) = A000578(n+1) + A000330(n).
From Harvey P. Dale, Jun 23 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=1, a(1)=9, a(2)=32, a(3)=78.
G.f.: (1+5*x+2*x^2)/(x-1)^4. (End)
a(n) = (n+1)*A000330(n+1) - n*A000330(n). - Bruno Berselli, Dec 11 2012
a(n) = A023855(2*n) + A023855(2*n+1). - Luc Rousseau, Feb 24 2018
E.g.f.: exp(x)*(6 + 48*x + 45*x^2 + 8*x^3)/6. - Elmo R. Oliveira, Aug 06 2025

Extensions

Corrected by T. D. Noe, Nov 01 2006 and Nov 08 2006