cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)

Examples

			A(3,2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
Square array A(n,k) begins:
  0,  0,   0,    0,    0,     0,     0, ...
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  1,   5,   12,   22,    35,    51, ...
  0,  2,  18,   64,  156,   310,   542, ...
  0,  3,  66,  363, 1193,  2980,  6273, ...
  0,  6, 266, 2214, 9748, 30526, 77262, ...
		

Crossrefs

Rows n=0-4 give: A000004, A000012, A001477, A000326, 2*A051662(k-1) for k>0.
Lower diagonal gives A255523.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A204213 T(n,k) = Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than k.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 9, 9, 1, 5, 16, 32, 21, 1, 6, 25, 78, 120, 51, 1, 7, 36, 155, 404, 473, 127, 1, 8, 49, 271, 1025, 2208, 1925, 323, 1, 9, 64, 434, 2181, 7167, 12492, 8034, 835, 1, 10, 81, 652, 4116, 18583, 51945, 72589, 34188, 2188, 1, 11, 100, 933, 7120, 41363, 164255, 387000, 430569, 147787, 5798
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2012

Keywords

Comments

Table starts
...1....1.....1......1.......1.......1........1........1........1.........1
...2....3.....4......5.......6.......7........8........9.......10........11
...4....9....16.....25......36......49.......64.......81......100.......121
...9...32....78....155.....271.....434......652......933.....1285......1716
..21..120...404...1025....2181....4116.....7120....11529....17725.....26136
..51..473..2208...7167...18583...41363....82440...151125...259459....422565
.127.1925.12492..51945..164255..431445...991152..2057553..3945655...7098949
.323.8034.72589.387000.1493142.4629851.12262470.28832499.61766005.122779448

Examples

			Some solutions for n=5 k=3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....0....1....2....2....2....1....3....0....3....1....2....2....3....2....1
..5....0....4....5....1....1....4....4....2....4....0....4....5....1....0....1
..5....1....2....4....3....0....1....1....3....1....1....2....5....3....2....2
..2....3....1....2....0....2....0....0....1....3....1....2....2....1....2....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Column 1 is A001006; column 2 is A104184; column 3 is A204208.
Row 4 is A051662.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0, 1, Sum[(Sum[Binomial[i, j]*(-1)^j* Binomial[-j*(2*k + 1) + i*(k + 1) - 1, i*k - j*(2*k + 1)], {j, 0, (i*k)/(2*k + 1)}])*T[n - i, k], {i, 1, n}]/n];
    Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=if n=0 then 1 else sum((sum(binomial(i,j)*(-1)^j*binomial(-j*(2*k+1)+i*(k+1)-1,i*k-j*(2*k+1)),j,0,(i*k)/(2*k+1)))*T(n-i,k),i,1,n)/n;  /* Vladimir Kruchinin, Apr 06 2017 */
  • PARI
    {L(n,k)=polcoeff( ( (1-x^(2*k+1))/(1-x) +x*O(x^(k*n)) )^n, k*n)}
    {T(n,k)=polcoeff(exp(sum(m=1, n, L(m,k)*x^m/m)+x*O(x^n)), n)}
    for(n=1, 10,for(k=1,10, print1(T(n,k), ", "));print("")) \\ Paul D. Hanna, Aug 01 2013
    

Formula

Empirical for rows:
T(1,k) = 1
T(2,k) = k + 1
T(3,k) = k^2 + 2*k + 1
T(4,k) = (4/3)*k^3 + (7/2)*k^2 + (19/6)*k + 1
T(5,k) = (23/12)*k^4 + (37/6)*k^3 + (91/12)*k^2 + (13/3)*k + 1
T(6,k) = (44/15)*k^5 + (133/12)*k^4 + 17*k^3 + (161/12)*k^2 + (167/30)*k + 1
T(7,k) = (841/180)*k^6 + (101/5)*k^5 + (1325/36)*k^4 + (73/2)*k^3 + (946/45)*k^2 + (34/5)*k + 1
...
G.f. for column k: exp( Sum_{n>=1} L(n,k)*x^n/n ) - 1, where L(n,k) = central coefficient of (1+x+x^2+x^3+...+x^(2*k))^n. - Paul D. Hanna, Aug 01 2013
T(n,k):=Sum_{i=1..n}((Sum_{j=0..(i*k)/(2*k+1)}(binomial(i,j)*(-1)^j*binomial(-j*(2*k+1)+i*(k+1)-1,i*k-j*(2*k+1))))*T(n-i,k))/n, T(0,k)=1. - Vladimir Kruchinin, Apr 06 2017

A051673 Cubic star numbers: a(n) = n^3 + 4*Sum_{i=0..n-1} i^2.

Original entry on oeis.org

0, 1, 12, 47, 120, 245, 436, 707, 1072, 1545, 2140, 2871, 3752, 4797, 6020, 7435, 9056, 10897, 12972, 15295, 17880, 20741, 23892, 27347, 31120, 35225, 39676, 44487, 49672, 55245, 61220, 67611, 74432, 81697, 89420, 97615, 106296, 115477, 125172
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

Also as a(n) = (1/6)*(14*n^3 - 12*n^2 + 4*n), n>0: structured cubeoctahedral numbers (vertex structure 7); and structured pentagonal anti-diamond numbers (vertex structure 7) (cf. A004466 = alternate vertex) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = binomial transform of [1, 11, 24, 14, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
This is prime for a(3) = 47. The subsequence of semiprimes begins: 707, 7435, 10897, 20741, 115477, 341797, 825091, 897097, no more through a(100). - Jonathan Vos Post, May 27 2010

Examples

			a(51) = 51*(51*(7*51-6)+2)/3 = 304351 = 17 * 17903 is semiprime. - _Jonathan Vos Post_, May 27 2010
		

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

Formula

a(n) = n*(n*(7*n-6) + 2)/3.
G.f.: x*(1+8*x+5*x^2)/(1-x)^4. - Bruno Berselli, May 12 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=12, a(3)=47. - Harvey P. Dale, Jul 22 2011
From Reinhard Zumkeller, Jul 25 2012: (Start)
a(n) = A214659(n) - A002378(n).
a(n) = Sum_{k=1..n} A214661(n, k), for n > 0 (row sums). (End)
E.g.f.: (x/3)*(3 + 15*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 10 2024

Extensions

Corrected by T. D. Noe, Nov 01 2006, Nov 08 2006

A220084 a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.

Original entry on oeis.org

1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
Offset: 0

Views

Author

Bruno Berselli, Dec 11 2012

Keywords

Comments

Sequence related to heptagonal pyramidal numbers (A002413) by a(n) = n*A002413(n) - (n-1)*A002413(n-1).
Other sequences of numbers of the form m*P(k,m)-(m-1)*P(k,m-1), where P(k,m) is the m-th k-gonal pyramidal number:
k=3, A002412(m) = m*A000292(m)-(m-1)*A000292(m-1);
k=4, A051662(m) = (m+1)*A000330(m+1)-m*A000330(m);
k=5, A213772(m) = m*A002411(m)-(m-1)*A002411(m-1);
k=6, A213837(m) = m*A002412(m)-(m-1)*A002412(m-1);
k=7, this sequence;
k=8, A130748(m) = m*A002414(m)-(m-1)*A002414(m-1).
Also, first bisection of A212983.
Binomial transform of (1, 14, 33, 20, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015

Crossrefs

Programs

  • Magma
    [(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
    
  • Magma
    /* By first comment: */  A002413:=func; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
    
  • Magma
    I:=[1,15,62,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{1,15,62,162},40] (* Harvey P. Dale, Dec 23 2012 *)
    CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
    
  • PARI
    a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+11*x+8*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3, a(0)=1, a(1)=15, a(2)=62, a(3)=162. - Harvey P. Dale, Dec 23 2012
a(n) = (n+1)*A000566(n+1) + Sum_{i=0..n} A000566(i). - Bruno Berselli, Dec 18 2013
E.g.f.: exp(x)*(6 + 84*x + 99*x^2 + 20*x^3)/6. - Elmo R. Oliveira, Aug 06 2025

A050509 House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.

Original entry on oeis.org

1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218, 95200, 102541
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999

Keywords

Comments

Also as a(n) = (1/6)*(9*n^3 - 3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - David Nacin, Feb 22 2017

Examples

			        *     *
a(2) = * * + * * = 10.
       * *   * *
		

Crossrefs

Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

  • Magma
    [(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[((1+n)^2*(2+3n))/2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,10,36,88},40] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = A000578(n+1) + (n+1)*A000217(n).
a(n) = (1/2)*(3*n+2)*(n+1)^2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - Harvey P. Dale, Jun 26 2011
G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016
E.g.f.: exp(x)*(2 + 18*x + 17*x^2 + 3*x^3)/2. - Elmo R. Oliveira, Aug 06 2025

A213751 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 2, 14, 9, 3, 30, 23, 13, 4, 55, 46, 32, 17, 5, 91, 80, 62, 41, 21, 6, 140, 127, 105, 78, 50, 25, 7, 204, 189, 163, 130, 94, 59, 29, 8, 285, 268, 238, 199, 155, 110, 68, 33, 9, 385, 366, 332, 287, 235, 180, 126, 77, 37, 10, 506, 485, 447, 396, 336, 271
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2012

Keywords

Comments

Principal diagonal: A051662
Antidiagonal sums: A006325
row 1, (1,3,5,7,9,...)**(1,2,3,4,5,...): A000330
row 2, (1,3,5,7,9,...)**(2,3,4,5,6,...): A101986
row 3, (1,3,5,7,9,...)**(3,4,5,6,7,...): (2*k^3 + 15*k^2 + k)/6
row 4, (1,3,5,7,9,...)**(4,5,6,7,8,...): (2*k^3 + 21*k^2 + k)/6
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...5....14...30....55....91
2...9....23...46....80....127
3...13...32...62....105...163
4...17...41...78....130...199
5...21...50...94....155...235
6...25...59...110...180...271
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := 2 n - 1; c[n_] := n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213751 *)
    Table[t[n, n], {n, 1, 40}] (* A051662 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A006325 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n + x - (n - 1)*x^2 and g(x) = (1 - x )^4.

A284551 Triangular array read by rows, demonstrating that the difference between a pentagonal number (left edge of triangle) and a square (right edge) is a triangular number.

Original entry on oeis.org

1, 5, 4, 12, 11, 9, 22, 21, 19, 16, 35, 34, 32, 29, 25, 51, 50, 48, 45, 41, 36, 70, 69, 67, 64, 60, 55, 49, 92, 91, 89, 86, 82, 77, 71, 64, 117, 116, 114, 111, 107, 102, 96, 89, 81, 145, 144, 142, 139, 135, 130, 124, 117, 109, 100, 176, 175, 173, 170, 166, 161, 155, 148, 140, 131, 121, 210, 209
Offset: 1

Views

Author

David Shane, Mar 29 2017

Keywords

Examples

			Rows: {1}; {5,4}; {12,11,9}; ...
Triangle begins:
               1
            5     4
        12    11     9
     22    21    19    16
  35    34    32    29    25
		

Crossrefs

Cf. A049777, A049780, which have a similar layout based on subtracting triangular numbers of increasing value from the leftmost element of the row.
A051662 gives row sums.

Programs

  • Maple
    A284551 := proc(n,m)
        n*(3*n-1)-m*(m-1) ;
        %/2 ;
    end proc:
    seq(seq(A284551(n,m),m=1..n),n=1..15) ; # R. J. Mathar, Mar 30 2017
  • Mathematica
    T[n_,m_]:= Floor[n(3n - 1) - m(m - 1)]/2; Table[T[n, k], {n, 12}, {k, n}] // Flatten (* Indranil Ghosh, Mar 30 2017 *)
  • PARI
    T(n,m) = floor(n*(3*n - 1) - m*(m - 1))/2;
    for(n=1, 12, for(k=1, n, print1(T(n,k),", ");); print();); \\ Indranil Ghosh, Mar 30 2017
    
  • Python
    def T(n, m): return (n*(3*n - 1) - m*(m - 1))//2
    for n in range(1, 13):
        print([T(n,k) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 30 2017

Formula

P(m,n) = (m(3m-1) - n(n-1))/2. Alternatively, P(n) - T(n-1) = S(n) where P(n) is a pentagonal number, T(n-1) is a triangular number, and S(n) is a square number.
Showing 1-8 of 8 results.