A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A006325
4-dimensional analog of centered polygonal numbers.
Original entry on oeis.org
0, 0, 1, 7, 26, 70, 155, 301, 532, 876, 1365, 2035, 2926, 4082, 5551, 7385, 9640, 12376, 15657, 19551, 24130, 29470, 35651, 42757, 50876, 60100, 70525, 82251, 95382, 110026, 126295, 144305, 164176, 186032, 210001, 236215, 264810, 295926
Offset: 0
Albert Rich (Albert_Rich(AT)msn.com)
A representation of the LOOP X C_4 graph, with edges and loops indexed as shown, as used in the second Mathematica program below:
. 3 1
. O_______O
. | 2 |
. |4 0|
. |_______|
. O 6 O
. 5 7
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
- Richard P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000027,
A000217,
A019298,
A244497,
A244879,
A244873,
A244880,
A293310,
A293309 (magic labelings of LOOP X C_k, for k = 1..3,5..10).
-
[n*(n-1)*(n^2-n+1)/6: n in [0..40]]; // Vincenzo Librandi, May 22 2011
-
Table[n*(n-1)*(n^2-n+1)/6, {n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
<< Omega.m; n = 4; cond = {}; Do[AppendTo[cond, Sum[a[Mod[2*k - j, 2*n]], {j, 0, 2}] == a[2*n]], {k, 0, n - 1}]; f = OEqSum[Product[x[i]^a[i], {i, 0, 2*n}], cond, u][[1]]; Do[f = OEqR[f, Subscript[u, k]], {k, n}];
(* Generating function: *)
f = Factor[f /. {x[2*n] -> x} /. {x[_] -> 1}]
(* This sequence (with initial zeros dropped): *)
CoefficientList[Series[f, {x, 0, 35}], x] (* L. Edson Jeffery, Oct 15 2017 *)
-
a(n)=n*(n-1)*(n^2-n+1)/6 \\ Charles R Greathouse IV, Sep 24 2015
A101986
Maximum sum of products of successive pairs in a permutation of order n+1.
Original entry on oeis.org
0, 2, 9, 23, 46, 80, 127, 189, 268, 366, 485, 627, 794, 988, 1211, 1465, 1752, 2074, 2433, 2831, 3270, 3752, 4279, 4853, 5476, 6150, 6877, 7659, 8498, 9396, 10355, 11377, 12464, 13618, 14841, 16135, 17502, 18944, 20463, 22061, 23740, 25502
Offset: 0
Eugene McDonnell (eemcd(AT)mac.com), Jan 29 2005
The permutations of order 5 with maximum sum of products is 1 3 5 4 2 and its reverse, since (1*3)+(3*5)+(5*4)+(4*2) is 46. All others are empirically less than 46. So a(4) = 46.
-
a101986 n = sum $ zipWith (*) [1,3..] (reverse [2..n+1])
-- Reinhard Zumkeller, Mar 30 2012
-
0 1 9 2 & p. % 6 & p. (A) NB. the polynomial P such that P(n) is a(n).
NB. where 0 1 9 2 are the coefficients in ascending order of the numerator of a rational polynomial and 6 is the (constant) coefficient of its denominator. J's primitive function p. produces a polynomial with these coefficients. Division is indicated by % . Thus the J expression (A) is equivalent to the formula above.
-
a:=n->add((n+j^2),j=1..n): seq(a(n),n=0..41); # Zerinvary Lajos, Jul 27 2006
-
Table[(n + 9 n^2 + 2 n^3)/6, {n, 0, 41}] (* Robert G. Wilson v, Feb 04 2005 *)
-
a(n)=n*(2*n^2+9*n+1)/6 \\ Charles R Greathouse IV, Jan 17 2012
A051662
House numbers: a(n) = (n+1)^3 + Sum_{i=1..n} i^2.
Original entry on oeis.org
1, 9, 32, 78, 155, 271, 434, 652, 933, 1285, 1716, 2234, 2847, 3563, 4390, 5336, 6409, 7617, 8968, 10470, 12131, 13959, 15962, 18148, 20525, 23101, 25884, 28882, 32103, 35555, 39246, 43184, 47377, 51833, 56560, 61566, 66859, 72447, 78338, 84540, 91061, 97909
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
Cf.
A000330,
A220084 (for a list of numbers of the form n*P(k,n) - (n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
-
- following Gary W. Adamson's comment.
a051662 = sum . zipWith (*) [1, 8, 15, 8] . a007318_row
-- Reinhard Zumkeller, Feb 19 2015
-
a:=n->sum(k^2, k=1..n):seq(a(n)+sum(n^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
-
Table[(n+1)^3+Sum[i^2,{i,n}],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1}, {1,9,32,78},40] (* Harvey P. Dale, Jun 23 2011 *)
-
A051662(n):=((8*n+21)*n+19)*n/6+1$ makelist(A051662(n),n,0,15); /* Martin Ettl, Dec 13 2012 */
-
a(n)=((8*n+21)*n+19)*n/6+1 \\ Charles R Greathouse IV, Jun 23 2011
Corrected by
T. D. Noe, Nov 01 2006 and Nov 08 2006
Showing 1-4 of 4 results.
Comments