cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A008865 a(n) = n^2 - 2.

Original entry on oeis.org

-1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119, 142, 167, 194, 223, 254, 287, 322, 359, 398, 439, 482, 527, 574, 623, 674, 727, 782, 839, 898, 959, 1022, 1087, 1154, 1223, 1294, 1367, 1442, 1519, 1598, 1679, 1762, 1847, 1934, 2023, 2114, 2207, 2302, 2399, 2498
Offset: 1

Views

Author

Keywords

Comments

For n >= 2, least m >= 1 such that f(m, n) = 0 where f(m,n) = Sum_{i=0..m} Sum_{k= 0..i} (-1)^k*(floor(i/n^k) - n*floor(i/n^(k+1))). - Benoit Cloitre, May 02 2004
For n >= 3, the a(n)-th row of Pascal's triangle always contains a triple forming an arithmetic progression. - Lekraj Beedassy, Jun 03 2004
Let C = 1 + sqrt(2) = 2.414213...; and 1/C = 0.414213... Then a(n) = (n + 1 + 1/C) * (n + 1 - C). Example: a(6) = 34 = (7 + 0.414...) * (7 - 2.414...). - Gary W. Adamson, Jul 29 2009
The sequence (n-4)^2-2, n = 7, 8, ... enumerates the number of non-isomorphic sequences of length n, with entries from {1, 2, 3} and no two adjacent entries the same, that minimally contain each of the thirteen rankings of three players (111, 121, 112, 211, 122, 212, 221, 123, 132, 213, 231, 312, 321) as embedded order isomorphic subsequences. By "minimally", we mean that the n-th symbol is necessary for complete inclusion of all thirteen words. See the arXiv paper below for proof. If n = 7, these sequences are 1213121, 1213212, 1231213, 1231231, 1231321, 1232123, and 1232132, and for each case, there are 3! = 6 isomorphs. - Anant Godbole, Feb 20 2013
a(n), n >= 0, with a(0) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 8 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
With a different offset, this is 2*n^2 - (n + 1)^2, which arises in one explanation of why Bertrand's postulate does not automatically prove Legendre's conjecture: as n gets larger, so does the range of numbers that can have primes that satisfy Bertrand's postulate yet do nothing for Legendre's conjecture. - Alonso del Arte, Nov 06 2013
x*(x + r*y)^2 + y*(y + r*x)^2 can be written as (x + y)*(x^2 + s*x*y + y^2). For r >= 0, the sequence gives the values of s: in fact, s = (r + 1)^2 - 2. - Bruno Berselli, Feb 20 2019
For n >= 2, the continued fraction expansion of sqrt(a(n)) is [n-1; {1, n-2, 1, 2n-2}]. For n=2, this collapses to [1; {2}]. - Magus K. Chu, Sep 06 2022

Examples

			G.f. = -x + 2*x^2 + 7*x^3 + 14*x^4 + 23*x^5 + 34*x^6 + 47*x^7 + 62*x^8 + 79*x^9 + ...
		

Crossrefs

Cf. A145067 (Zero followed by partial sums of A008865).
Cf. A028871 (primes).
Cf. A263766 (partial products).
Cf. A270109. [Bruno Berselli, Mar 17 2016]

Programs

  • Haskell
    a008865 = (subtract 2) . (^ 2) :: Integral t => t -> t
    a008865_list = scanl (+) (-1) [3, 5 ..]
    -- Reinhard Zumkeller, May 06 2013
    
  • Magma
    [n^2 - 2: n in [1..60]]; // Vincenzo Librandi, May 01 2014
  • Mathematica
    Range[50]^2 - 2 (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    {for(n=1, 47, print1(n^2-2, ","))} \\ Klaus Brockhaus, Oct 17 2008
    

Formula

For n > 1: a(n) = A143053(A000290(n)), A143054(a(n)) = A000290(n). - Reinhard Zumkeller, Jul 20 2008
G.f.: (x-5*x^2+2*x^3)/(-1+3*x-3*x^2+x^3). - Klaus Brockhaus, Oct 17 2008
E.g.f.: (x^2 + x -2)*exp(x) + 2. - G. C. Greubel, Aug 19 2017
a(n+1) = A101986(n) - A101986(n-1) = A160805(n) - A160805(n-1). - Reinhard Zumkeller, May 26 2009
For n > 1, a(n) = floor(n^5/(n^3 + n + 1)). - Gary Detlefs, Feb 10 2010
a(n) = a(n-1) + 2*n - 1 for n > 1, a(1) = -1. - Vincenzo Librandi, Nov 18 2010
Right edge of the triangle in A195437: a(n) = A195437(n-2, n-2). - Reinhard Zumkeller, Nov 23 2011
a(n)*a(n-1) + 2 = (a(n) - n)^2 = A028552(n-2)^2. - Bruno Berselli, Dec 07 2011
a(n+1) = A000096(n) + A000096(n-1) for all n in Z. - Michael Somos, Nov 11 2015
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = (1 - sqrt(2)*Pi*cot(sqrt(2)*Pi))/4.
Sum_{n>=1} (-1)^n/a(n) = (1 - sqrt(2)*Pi*cosec(sqrt(2)*Pi))/4. (End)
Assume offset 0. Then a(n) = 2*LaguerreL(2, 1 - n). - Peter Luschny, May 09 2021
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = sqrt(2/3)*sin(sqrt(3)*Pi)/sin(sqrt(2)*Pi).
Product_{n>=2} (1 + 1/a(n)) = -Pi/(sqrt(2)*sin(sqrt(2)*Pi)). (End)

A286781 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1
Offset: 0

Views

Author

Gheorghe Coserea, May 14 2017

Keywords

Comments

T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the self-energy function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]    [7]  [8]
[0]  1;
[1]  2,        1;
[2]  10,       9,        1;
[3]  74,       91,       23,       1;
[4]  706,      1063,     416,      46,       1;
[5]  8162,     14193,    7344,     1350,     80,      1;
[6]  110410,   213953,   134613,   34362,    3550,    127,    1;
[7]  1708394,  3602891,  2620379,  842751,   125195,  8085,   189,   1;
[8]  29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
		

Crossrefs

For vertex and polarization functions see A286782 and A286783. For GWA of the self-energy and polarization functions see A286784 and A286785.
Columns k=0-8 give: A000698(k=0), A286786(k=1), A286787(k=2), A286788(k=3), A286789(k=4), A286790(k=5), A286791(k=6), A286792(k=7), A286793(k=8).

Programs

  • Mathematica
    max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
    Table[row[n], {n, 0, max-1}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
  • PARI
    A286781_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1;);
      y0;
    };
    concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))
    \\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y,'x)) * (1 - x*y*(1-t))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y * (1-x*y)^2 = (1 + x*y + 2*x^2*deriv(y,x)) * (1 - x*y*(1-t)), with y(0;t) = 1, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, 0<=n, 0<=k<=n.
A000698(n+1)=T(n,0), A101986(n)=T(n,n-1), A000108(n)=P_n(-1), A286794(n)=P_n(1).

A026035 Expansion of x^2*(2 - x + x^2) / ((1 + x)*(1 - x)^4).

Original entry on oeis.org

2, 5, 12, 22, 38, 59, 88, 124, 170, 225, 292, 370, 462, 567, 688, 824, 978, 1149, 1340, 1550, 1782, 2035, 2312, 2612, 2938, 3289, 3668, 4074, 4510, 4975, 5472, 6000, 6562, 7157, 7788, 8454, 9158, 9899, 10680, 11500, 12362, 13265, 14212, 15202, 16238
Offset: 2

Views

Author

Keywords

Comments

Equals (d(n)-r(n))/2, where d = A006527 and r is the periodic sequence with fundamental period (0,1,0,1).
Consider any of the permutations of (1,2,3,...,n) as p(1),p(2),p(3),...,p(n). Then take the sum S of products formed from the permutation as S = p(1)*p(2) + p(2)*p(3) + p(3)*p(4) +... + p(n-1)*p(n). This sequence represents the minimum possible S. - Leroy Quet and Rainer Rosenthal, Jan 30 2005
From Dmitry Kamenetsky, Dec 15 2006: (Start)
This sequence is related to A101986, except here we take the minimum sum of products of successive pairs. Here is a method for generating such permutations. Start with two lists, the first has numbers 1 to n, while the second is empty.
Repeat the following operations until the first list is empty:
1. Move the largest number of the first list to the leftmost available position in the second list. The move operation removes the original number from the first list.
2. Move the largest number of the first list to the rightmost available position in the second list.
3. Move the smallest number of the first list to the leftmost available position in the second list.
4. Move the smallest number of the first list to the rightmost available position in the second list. For example when n=8, the permutation is 8, 1, 6, 3, 4, 5, 2, 7.
(End)

Crossrefs

Cf. A101986.

Programs

  • Magma
    [Binomial(n,3)+Floor(n^2/2): n in [2..50]]; // Bruno Berselli, Jun 08 2017
  • Mathematica
    CoefficientList[Series[(2 - x + x^2)/((1 + x) (1 - x)^4), {x, 0, 45}], x] (* Robert G. Wilson v, Jan 29 2005 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {2, 5, 12, 22, 38}, 50] (* Harvey P. Dale, May 31 2013 *)
    Table[(2 n^3 + 4 n - 3 + 3 (-1)^n)/12, {n, 2, 50}] (* Bruno Berselli, Jun 08 2017 *)

Formula

a(n) = (2*n^3 + 4*n - 3 + 3*(-1)^n)/12. - Ralf Stephan, Jan 30 2005.
For n>6, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5), and a(2)=2, a(3)=5, a(4)=12, a(5)=22, a(6)=38. - Harvey P. Dale, May 31 2013
a(n) = binomial(n,3) + floor(n^2/2). - Bruno Berselli, Jun 08 2017

Extensions

Corrected by Ralf Stephan, Jan 09 2005

A213751 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 2, 14, 9, 3, 30, 23, 13, 4, 55, 46, 32, 17, 5, 91, 80, 62, 41, 21, 6, 140, 127, 105, 78, 50, 25, 7, 204, 189, 163, 130, 94, 59, 29, 8, 285, 268, 238, 199, 155, 110, 68, 33, 9, 385, 366, 332, 287, 235, 180, 126, 77, 37, 10, 506, 485, 447, 396, 336, 271
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2012

Keywords

Comments

Principal diagonal: A051662
Antidiagonal sums: A006325
row 1, (1,3,5,7,9,...)**(1,2,3,4,5,...): A000330
row 2, (1,3,5,7,9,...)**(2,3,4,5,6,...): A101986
row 3, (1,3,5,7,9,...)**(3,4,5,6,7,...): (2*k^3 + 15*k^2 + k)/6
row 4, (1,3,5,7,9,...)**(4,5,6,7,8,...): (2*k^3 + 21*k^2 + k)/6
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...5....14...30....55....91
2...9....23...46....80....127
3...13...32...62....105...163
4...17...41...78....130...199
5...21...50...94....155...235
6...25...59...110...180...271
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := 2 n - 1; c[n_] := n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213751 *)
    Table[t[n, n], {n, 1, 40}] (* A051662 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A006325 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n + x - (n - 1)*x^2 and g(x) = (1 - x )^4.

A378112 Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 9, 5, 0, 1, 1, 4, 23, 55, 14, 0, 1, 1, 5, 46, 265, 400, 42, 0, 1, 1, 6, 80, 880, 3942, 3266, 132, 0, 1, 1, 7, 127, 2347, 23695, 70395, 28999, 429, 0, 1, 1, 8, 189, 5403, 105554, 824229, 1445700, 274537, 1430, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2024

Keywords

Examples

			A(3,2) = 9:
                             /\
           /\/\             /  \      /\     /\/\
  (/\/\/\,/    \)  (/\/\/\,/    \)  (/  \/\,/    \)
.
            /\                                /\
    /\     /  \        /\   /\/\        /\   /  \
  (/  \/\,/    \)  (/\/  \,/    \)  (/\/  \,/    \)
.
                             /\        /\     /\
    /\/\   /\/\      /\/\   /  \      /  \   /  \
  (/    \,/    \)  (/    \,/    \)  (/    \,/    \)
.
Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  1,  1,    1,     1,      1,       1,        1, ...
  0,  1,    2,     3,      4,       5,        6, ...
  0,  2,    9,    23,     46,      80,      127, ...
  0,  5,   55,   265,    880,    2347,     5403, ...
  0, 14,  400,  3942,  23695,  105554,   382508, ...
  0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
		

Crossrefs

Columns k=0-3 give: A019590(n+1), A120588, A355281, A378114.
Rows n=0+1,2,3 give: A000012, A001477, A101986.
Main diagonal gives A378113.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
          (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
        end:
    A:= proc(n, k) option remember;
          b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

Column k is INVERTi transform of row k of A368025.

A160805 a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.

Original entry on oeis.org

4, 6, 13, 27, 50, 84, 131, 193, 272, 370, 489, 631, 798, 992, 1215, 1469, 1756, 2078, 2437, 2835, 3274, 3756, 4283, 4857, 5480, 6154, 6881, 7663, 8502, 9400, 10359, 11381, 12468, 13622, 14845, 16139, 17506, 18948, 20467, 22065, 23744, 25506, 27353, 29287
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2009

Keywords

Comments

Arithmetic progression of third order; a(n+1)-a(n) = A008865(n+2);
a(n) = A101986(n) + 4.

References

  • R. Courant, Differential and Integral Calculus Vol. I (Blackie&Son, 1937), ch. I.4, Example 5, p.29.

Crossrefs

Programs

  • Magma
    [(2*n^3+9*n^2+n+24)/6: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A160805:=n->(2*n^3+9*n^2+n+24)/6: seq(A160805(n), n=0..80); # Wesley Ivan Hurt, Aug 29 2015
  • Mathematica
    Table[(2 n^3 + 9 n^2 + n + 24)/6, {n, 0, 60}]
    CoefficientList[Series[(4 - 10*x + 13*x^2 - 5*x^3)/(x - 1)^4, {x, 0, 60}], x] (* Wesley Ivan Hurt, Aug 29 2015 *)
  • PARI
    first(m)=vector(m,i,i--;(2*i^3 + 9*i^2 + i + 24) / 6) \\ Anders Hellström, Aug 29 2015

Formula

a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.
From Wesley Ivan Hurt, Aug 29 2015: (Start)
G.f.: (4-10*x+13*x^2-5*x^3)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>3. (End)

A092283 Triangular array read by rows: T(n,k)=n+k^2, 1<=k<=n.

Original entry on oeis.org

2, 3, 6, 4, 7, 12, 5, 8, 13, 20, 6, 9, 14, 21, 30, 7, 10, 15, 22, 31, 42, 8, 11, 16, 23, 32, 43, 56, 9, 12, 17, 24, 33, 44, 57, 72, 10, 13, 18, 25, 34, 45, 58, 73, 90, 11, 14, 19, 26, 35, 46, 59, 74, 91, 110, 12, 15, 20, 27, 36, 47, 60, 75, 92, 111, 132, 13, 16, 21, 28, 37
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 27 2004

Keywords

Comments

T(n,n) = A002378(n+1);
Sum(T(n,k):1<=k<=n) = A000330(n) + A000290(n).

Examples

			   2 ;
   3   6 ;
   4   7  12 ;
   5   8  13  20;
   6   9  14  21  30;
   7  10  15  22  31  42 ;
   8  11  16  23  32  43  56 ;
   9  12  17  24  33  44  57  72 ;
  10  13  18  25  34  45  58  73  90 ;
  11  14  19  26  35  46  59  74  91 110 ;
		

Crossrefs

Cf. A101986 (row sums).

Programs

  • Mathematica
    Table[n+k^2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Jun 24 2017 *)

A102417 In the lexicographically ordered table of permutations of [n], there are two entries that give the greatest sum of pairwise products and they are reversals of each other. The items in this sequence are the indices of the earlier of the two.

Original entry on oeis.org

0, 1, 3, 11, 41, 191, 1055, 6959, 53159, 462239, 4499999, 48454559, 571409999, 7321386239, 101249648639, 1502852279039, 23827244757119, 401839065331199, 7182224591270400, 135607710526041600, 2696935204633823744
Offset: 2

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Feb 23 2005

Keywords

Comments

The sequence of maximum sums, for which those here are the indices, is given by A101986. The formula for a(n) is essentially an inner product. For example, if n is 7, the result is obtained by (7 6 5 4 3 2 1) ip d2(1 2 3 4 5 6 7) where d2(k) = k! if k is odd and k! - (k/2)! if k is even, that is, (7 6 5 4 3 2 1) ip (1 1 6 22 120 714 5040) or 6959.
Changing the offset to 1 would change the sequence so that it gives the greater of the two indices of the rows that yield the maximum sum of products, but for permutations one shorter in length. For example, with offset 2, index 3 is the index of the earlier row having the permutation giving maximum value for permutations of length 4; with offset 1, index 3 is the later index for the permutation giving maximum value for permutations of length 3. - Eugene McDonnell (eemcd(AT)mac.com), Feb 23 2005

Examples

			The 6959th entry in the table of permutations of order 9 is {1, 3, 5, 7, 9, 8, 6, 4, 2}, which has the pairwise products 3 15 35 63 72 48 24 8; these sum to 268 and this is the ninth entry in A101986, so a(9) = 6959.
		

Formula

a(n) = Sum_{k=1..n} (n+1-k)*d2(k) where d2(k) = k! if k is odd, k! - (k/2)! otherwise [with thanks to Max Alekseyev].

A306262 Difference between maximum and minimum sum of products of successive pairs in permutations of [n].

Original entry on oeis.org

0, 0, 0, 4, 11, 24, 42, 68, 101, 144, 196, 260, 335, 424, 526, 644, 777, 928, 1096, 1284, 1491, 1720, 1970, 2244, 2541, 2864, 3212, 3588, 3991, 4424, 4886, 5380, 5905, 6464, 7056, 7684, 8347, 9048, 9786, 10564, 11381, 12240, 13140, 14084, 15071, 16104, 17182
Offset: 0

Views

Author

Louis Rogliano, Feb 01 2019

Keywords

Examples

			a(4) = 11 = 23 - 12. 1342 and 2431 have sums 23, 3214 and 4123 have sums 12.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 0, (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
        <0|0|0|0|1>, <-1|3|-2|-2|3>>^n. <<1, 0, 0, 4, 11>>)[1, 1]):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 02 2019
  • Mathematica
    a[n_] := Module[
      {min, max, perm, g, mperm},
      perm = Permutations[Range[n]];
      g[x_] := Sum[x[[i]] x[[i + 1]], {i, 1, Length[x] - 1}];
      mperm = Map[g, perm];
      min = Min[mperm];
      max = Max[mperm];
      Return[max - min]]
    LinearRecurrence[{3,-2,-2,3,-1},{0,0,0,4,11,24},60] (* Harvey P. Dale, Aug 05 2020 *)
  • PARI
    concat([0,0,0], Vec(x^3*(4 - x - x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Feb 05 2019

Formula

a(n+1) = a(n) + 1/4*((-1+(-1)^(n-1))^2+2*(n-1)*(n+4)) with a(n) = 0 for n <= 2.
From Alois P. Heinz, Feb 01 2019: (Start)
G.f.: -(x^2+x-4)*x^3/((x+1)*(x-1)^4).
a(n) = (2*n^3+6*n^2-26*n+15-3*(-1)^n)/12 for n > 0.
a(n) = A101986(n-1) - A026035(n) for n > 0. (End)
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Wesley Ivan Hurt, May 28 2021
a(n) = A110610(n+1) - A110611(n+1). - Talmon Silver, Sep 24 2025

Extensions

More terms from Alois P. Heinz, Feb 01 2019
Showing 1-10 of 11 results. Next