A051736 Number of 3 X n (0,1)-matrices with no consecutive 1's in any row or column.
1, 5, 17, 63, 227, 827, 2999, 10897, 39561, 143677, 521721, 1894607, 6879979, 24983923, 90725999, 329460929, 1196397873, 4344577397, 15776816033, 57291635519, 208047769363, 755500774443, 2743511349031, 9962735709201, 36178491743225, 131377896967213, 477083233044745
Offset: 0
Examples
There are five 3 X 1 (0,1)-matrices with no consecutive 1's: 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 There are 17 3 X 2 (0,1)-matrices with no consecutive 1's: 0 0, 0 1, 0 0, 0 0, 0 1, 1 0, 1 0, 1 0, 0 0, 0 1, 0 0, 0 1, 0 0, 0 1, 0 0, 1 0, 1 0 0 0, 0 0, 0 1, 0 0, 0 0, 0 0, 0 1, 0 0, 1 0, 1 0, 1 0, 1 0, 0 0, 0 0, 0 1, 0 0, 0 1 0 0, 0 0, 0 0, 0 1, 0 1, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 1 0, 1 0, 1 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..999
- N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, preprint, SIAM J. Discrete Math., 11(1), 54-60.
- N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, SIAM J. Discrete Math, 11 (1998) 54-60.
- Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (2,6,0,-1).
Programs
-
Haskell
a051736 n = a051736_list !! (n-1) a051736_list = 1 : 5 : 17 : 63 : zipWith (-) (map (* 2) $ drop 2 $ zipWith (+) (map (* 3) a051736_list) (tail a051736_list)) a051736_list -- Reinhard Zumkeller, Apr 02 2012
-
Mathematica
LinearRecurrence[{2, 6, 0, -1}, {1, 5, 17, 63}, 40] (* Harvey P. Dale, Mar 05 2013 *) CoefficientList[Series[(1 + 3 x + x^2 - x^3)/(1 - 2 x - 6 x^2 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *) Table[-RootSum[1 - 6 #1^2 - 2 #1^3 + #1^4 &, 263 #1^n - 657 #1^(n + 1) - 331 #1^(n + 2) + 81 #1^(n + 3) &]/1994, {n, 0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
-
PARI
Vec((1+3*x+x^2-x^3)/(1-2*x-6*x^2+x^4)+O(x^50)) \\ Michel Marcus, Sep 17 2014
Formula
a(n) = 2*a(n-1) + 6*a(n-2) - a(n-4).
G.f.: (1+x)*(1+2*x-x^2)/(1-2*x-6*x^2+x^4). - Philippe Deléham, Sep 07 2006
Extensions
More terms from James Sellers, Dec 08 1999
More terms from Michel Marcus, Sep 17 2014
Offset fixed by Eric W. Weisstein, Sep 21 2017
Comments