A051799 Partial sums of A007587.
1, 14, 60, 170, 385, 756, 1344, 2220, 3465, 5170, 7436, 10374, 14105, 18760, 24480, 31416, 39729, 49590, 61180, 74690, 90321, 108284, 128800, 152100, 178425, 208026, 241164, 278110, 319145, 364560, 414656, 469744, 530145, 596190
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to sequences related to pyramidal numbers.
Crossrefs
Programs
-
Magma
/* A000027 convolved with A051624 (excluding 0): */ A051624:=func
; [&+[(n-i+1)*A051624(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012 -
Mathematica
Accumulate[Table[n(n+1)(10n-7)/6,{n,0,50}]] (* Harvey P. Dale, Nov 13 2013 *)
Formula
a(n) = C(n+3, 3)*(5*n+2)/2 = (n+1)*(n+2)*(n+3)*(5*n+2)/12.
G.f.: (1+9*x)/(1-x)^5.
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (125*log(5) + 10*sqrt(5*(5-2*sqrt(5)))*Pi - 50*sqrt(5)*log(phi) - 84)/104, where phi is the golden ratio (A001622).
Sum_{n>=0} (-1)^n/a(n) = (50*sqrt(5)*log(phi) + 5*sqrt(50-10*sqrt(5))*Pi - 256*log(2) + 90)/52. (End)
Comments