cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051868 16-gonal (or hexadecagonal) numbers: a(n) = n*(7*n-6).

Original entry on oeis.org

0, 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, 1288, 1485, 1696, 1921, 2160, 2413, 2680, 2961, 3256, 3565, 3888, 4225, 4576, 4941, 5320, 5713, 6120, 6541, 6976, 7425, 7888, 8365, 8856, 9361, 9880, 10413, 10960, 11521
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 16, ... and the parallel line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 18 2012
This is also a star octagonal number: a(n) = A000567(n) + 8*A000217(n-1). - Luciano Ancora, Mar 29 2015
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = T(n-1) + T(4n-3) - T(2n-4) + T(n-3). In general, let P(k,n) be the n-th k-gonal number. Then for k>1, P(T(k)+1,n) = T(n-1) + T((k-1)n-(k-2)) - T((k-3)n-2(k-3)) + T((k-4)n-3(k-4)) - ... + (-1)^(k+1)*T(n-(k-2)). - Charlie Marion, Dec 23 2019

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Crossrefs

Programs

Formula

a(n) = 14*n + a(n-1) - 13, with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+13*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(0)=0, a(1)=1, a(2)=16; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 07 2011
a(14*a(n) + 92*n + 1) = a(14*a(n) + 92*n) + a(14*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: exp(x)*x*(1 + 7*x). - Stefano Spezia, Dec 27 2019
a(n) = (4*n-3)^2 - (3*n-3)^2. In general, if we let P(k,n) be the n-th k-gonal number, then P(4k,n) = (k*n-k+1)^2 - ((k-1)*n-k+1)^2. In addition, {P(4k,n)} are the only polygonal number sequences each of whose terms can be written as the difference of two squares. - Charlie Marion, Feb 16 2020
Product_{n>=2} (1 - 1/a(n)) = 7/8. - Amiram Eldar, Jan 22 2021