A051868 16-gonal (or hexadecagonal) numbers: a(n) = n*(7*n-6).
0, 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, 1288, 1485, 1696, 1921, 2160, 2413, 2680, 2961, 3256, 3565, 3888, 4225, 4576, 4941, 5320, 5713, 6120, 6541, 6976, 7425, 7888, 8365, 8856, 9361, 9880, 10413, 10960, 11521
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- John Elias, Illustration: 16-gonal Star Configuration
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n(7n-6),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,1,16}, 51] (* Harvey P. Dale, May 07 2011 *)
-
PARI
a(n)=n*(7*n-6) \\ Charles R Greathouse IV, Jan 24 2014
Formula
a(n) = 14*n + a(n-1) - 13, with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+13*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(0)=0, a(1)=1, a(2)=16; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 07 2011
a(14*a(n) + 92*n + 1) = a(14*a(n) + 92*n) + a(14*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: exp(x)*x*(1 + 7*x). - Stefano Spezia, Dec 27 2019
a(n) = (4*n-3)^2 - (3*n-3)^2. In general, if we let P(k,n) be the n-th k-gonal number, then P(4k,n) = (k*n-k+1)^2 - ((k-1)*n-k+1)^2. In addition, {P(4k,n)} are the only polygonal number sequences each of whose terms can be written as the difference of two squares. - Charlie Marion, Feb 16 2020
Product_{n>=2} (1 - 1/a(n)) = 7/8. - Amiram Eldar, Jan 22 2021
Comments