A051870 18-gonal (or octadecagonal) numbers: a(n) = n*(8*n-7).
0, 1, 18, 51, 100, 165, 246, 343, 456, 585, 730, 891, 1068, 1261, 1470, 1695, 1936, 2193, 2466, 2755, 3060, 3381, 3718, 4071, 4440, 4825, 5226, 5643, 6076, 6525, 6990, 7471, 7968, 8481, 9010, 9555, 10116, 10693, 11286, 11895, 12520
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..999
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Wikipedia, Polygonal number.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
A051870 := proc(n) n*(8*n-7) ; end proc: seq(A051870(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
Table[n (8 n - 7), {n, 0, 40}] (* Bruno Berselli, Nov 11 2014 *)
-
PARI
a(n)=n*(8*n-7) \\ Charles R Greathouse IV, Jul 19 2011
Formula
G.f.: x*(1+15*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 16*n + a(n-1) - 15, with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
a(16*a(n)+121*n+1) = a(16*a(n)+121*n) + a(16*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: (8*x^2 + x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = ((1+sqrt(2))*Pi + 2*sqrt(2)*arccoth(sqrt(2)) + 8*log(2))/14. - Amiram Eldar, Oct 20 2020
Product_{n>=2} (1 - 1/a(n)) = 8/9. - Amiram Eldar, Jan 22 2021
Comments