A051872 20-gonal (or icosagonal) numbers: a(n) = n*(9*n-8).
0, 1, 20, 57, 112, 185, 276, 385, 512, 657, 820, 1001, 1200, 1417, 1652, 1905, 2176, 2465, 2772, 3097, 3440, 3801, 4180, 4577, 4992, 5425, 5876, 6345, 6832, 7337, 7860, 8401, 8960, 9537, 10132, 10745, 11376, 12025, 12692, 13377, 14080
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A051872 := proc(n) n*(9*n-8) ;end proc: seq(A051872(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
Table[9n^2 - 8n, {n, 0, 59}] (* Alonso del Arte, Dec 20 2014 *) PolygonalNumber[20,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 14 2017 *)
-
PARI
n*(9*n-8) \\ Charles R Greathouse IV, Jan 24 2014
Formula
a(n) = 18*n + a(n-1) - 17, with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+17*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(18*a(n) + 154*n + 1) = a(18*a(n) + 154*n) + a(18*n + 1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 9/10. - Amiram Eldar, Jan 22 2021
For n>0, a(n) = A002378(3*n-2) + n - 2. - Charlie Marion, Jul 18 2022
E.g.f.: exp(x)*(x + 9*x^2). - Nikolaos Pantelidis, Feb 05 2023
Comments