cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052011 Number of primes between successive Fibonacci numbers exclusive.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 16, 23, 37, 55, 84, 125, 198, 297, 458, 704, 1087, 1673, 2602, 4029, 6263, 9738, 15186, 23704, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419527, 13298630
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

With the given sequence data, we see that neither endpoint is included, so we count primes p in the open interval F(n)Jeppe Stig Nielsen, Jun 06 2015

Examples

			Between Fib(9)=34 and Fib(10)=55 we find the following primes: 37, 41, 43, 47 and 53 hence a(9)=5.
		

Crossrefs

Cf. A000040, A001605, A005478 (endpoint primes), A010051, A052012, A054782.

Programs

  • Haskell
    a052011 n = a052011_list !! (n-1)
    a052011_list = c 0 0 $ drop 2 a000045_list where
      c x y fs'@(f:fs) | x < f     = c (x+1) (y + a010051 x) fs'
                       | otherwise = y : c (x+1) 0 fs
    -- Reinhard Zumkeller, Dec 18 2011
    
  • Maple
    for n from 1 to 43 do T[n]:= numtheory:-pi(combinat:-fibonacci(n)) od:
    seq(T[n]-T[n-1]-`if`(isprime(combinat:-fibonacci(n)),1,0), n=2..43); # Robert Israel, Jun 08 2015
  • Mathematica
    lst={};Do[p=0;Do[If[PrimeQ[a],p++ ],{a,Fibonacci[n]+1,Fibonacci[n+1]-1}];AppendTo[lst,p],{n,50}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    pbf[n_]:=Module[{fib1=If[PrimeQ[Fibonacci[n+1]],PrimePi[Fibonacci[n+1]-1], PrimePi[ Fibonacci[n+1]]], fib0=If[PrimeQ[Fibonacci[n]], PrimePi[ Fibonacci[n]+1],PrimePi[Fibonacci[n]]]},Max[0,fib1-fib0]]; Array[pbf,50] (* Harvey P. Dale, Mar 01 2012 *)
  • PARI
    a(n)=my(s); forprime(p=fibonacci(n)+1,fibonacci(n+1)-1,s++); s \\ Charles R Greathouse IV, Jun 08 2015

Formula

a(n) = pi(F(n+1)-1) - pi(F(n)) = A000720(A000045(n+1)-1) - A000720(A000045(n)). - Jonathan Vos Post, Mar 08 2010; corrected by Jeppe Stig Nielsen, Jun 06 2015
a(n) ~ phi^(n-1)/(n*sqrt(5)*log(phi)), where phi = (1+sqrt(5))/2 is the golden ratio. - Charles R Greathouse IV, Jun 08 2015
a(n) = A054782(n+1) - A054782(n) - [n+1 in A001605], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024