A052011 Number of primes between successive Fibonacci numbers exclusive.
0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 16, 23, 37, 55, 84, 125, 198, 297, 458, 704, 1087, 1673, 2602, 4029, 6263, 9738, 15186, 23704, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419527, 13298630
Offset: 1
Examples
Between Fib(9)=34 and Fib(10)=55 we find the following primes: 37, 41, 43, 47 and 53 hence a(9)=5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..122 (calculated from the data at A054782 and A001605)
Programs
-
Haskell
a052011 n = a052011_list !! (n-1) a052011_list = c 0 0 $ drop 2 a000045_list where c x y fs'@(f:fs) | x < f = c (x+1) (y + a010051 x) fs' | otherwise = y : c (x+1) 0 fs -- Reinhard Zumkeller, Dec 18 2011
-
Maple
for n from 1 to 43 do T[n]:= numtheory:-pi(combinat:-fibonacci(n)) od: seq(T[n]-T[n-1]-`if`(isprime(combinat:-fibonacci(n)),1,0), n=2..43); # Robert Israel, Jun 08 2015
-
Mathematica
lst={};Do[p=0;Do[If[PrimeQ[a],p++ ],{a,Fibonacci[n]+1,Fibonacci[n+1]-1}];AppendTo[lst,p],{n,50}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *) pbf[n_]:=Module[{fib1=If[PrimeQ[Fibonacci[n+1]],PrimePi[Fibonacci[n+1]-1], PrimePi[ Fibonacci[n+1]]], fib0=If[PrimeQ[Fibonacci[n]], PrimePi[ Fibonacci[n]+1],PrimePi[Fibonacci[n]]]},Max[0,fib1-fib0]]; Array[pbf,50] (* Harvey P. Dale, Mar 01 2012 *)
-
PARI
a(n)=my(s); forprime(p=fibonacci(n)+1,fibonacci(n+1)-1,s++); s \\ Charles R Greathouse IV, Jun 08 2015
Formula
a(n) = pi(F(n+1)-1) - pi(F(n)) = A000720(A000045(n+1)-1) - A000720(A000045(n)). - Jonathan Vos Post, Mar 08 2010; corrected by Jeppe Stig Nielsen, Jun 06 2015
a(n) ~ phi^(n-1)/(n*sqrt(5)*log(phi)), where phi = (1+sqrt(5))/2 is the golden ratio. - Charles R Greathouse IV, Jun 08 2015
a(n) = A054782(n+1) - A054782(n) - [n+1 in A001605], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024
Comments
Jeppe Stig Nielsen, Jun 06 2015